Journal of Applied Physics, volume 117, issue 4, pages 44901

Resistive switching and synaptic properties of fully atomic layer deposition grown TiN/HfO2/TiN devices

Publication typeJournal Article
Publication date2015-01-26
scimago Q2
wos Q2
SJR0.649
CiteScore5.4
Impact factor2.7
ISSN00218979, 10897550
General Physics and Astronomy
Abstract

Recently proposed novel neural network hardware designs imply the use of memristors as electronic synapses in 3D cross-bar architecture. Atomic layer deposition (ALD) is the most feasible technique to fabricate such arrays. In this work, we present the results of the detailed investigation of the gradual resistive switching (memristive) effect in nanometer thick fully ALD grown TiN/HfO2/TiN stacks. The modelling of the I-V curves confirms interface limited trap-assisted-tunneling mechanism along the oxygen vacancies in HfO2 in all conduction states. The resistivity of the stack is found to critically depend upon the distance from the interface to the first trap in HfO2. The memristive properties of ALD grown TiN/HfO2/TiN devices are correlated with the demonstrated neuromorphic functionalities, such as long-term potentiation/depression and spike-timing dependent plasticity, thus indicating their potential as electronic synapses in neuromorphic hardware.

Top-30

Journals

1
2
3
4
1
2
3
4

Publishers

5
10
15
20
5
10
15
20
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?