Open Access
Open access
volume 10 issue 2 pages 29201

β-Gallium oxide power electronics

Andrew J Green 1
James Speck 2
Grace Xing 3
Peter Moens 4
Fredrik Allerstam 4
Krister Gumaelius 4
Thomas Neyer 4
Andrea Arias Purdue 5
Vivek Mehrotra 5
Akito Kuramata 6
Kohei Sasaki 6
Shinya Watanabe 6
Kimiyoshi Koshi 6
John Blevins 1
O Bierwagen 7
Kevin Leedy 1
Aaron R Arehart 8
Adam T Neal 1
Shin Mou 1
Avinash Kumar 9
Ankit Sharma 9
Krishnendu Ghosh 9
Uttam Singisetti 9
Wenshen Li 2
Kelson Chabak 1
Kyle Liddy 1
Siddharth Rajan 8
Samuel Graham 10
Sukwon Choi 11
Zhe Cheng 12
Masataka Higashiwaki 13
1
 
Air Force Research Laboratory 1 , Wright Patterson Air Force Base, Ohio 45433, USA
4
 
ON Semiconductor 4 , Oudenaarde 9700, Belgium
5
 
Teledyne 5 , Thousand Oaks, California 91360, USA
6
 
Novel Crystal Technology, Inc. 6 , Tokyo 100-0005, Japan
7
 
Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund 7 , Berlin 10117, Germany
Publication typeJournal Article
Publication date2022-02-01
scimago Q1
wos Q2
SJR1.124
CiteScore7.9
Impact factor4.5
ISSN2166532X
General Materials Science
General Engineering
Abstract

Gallium Oxide has undergone rapid technological maturation over the last decade, pushing it to the forefront of ultra-wide band gap semiconductor technologies. Maximizing the potential for a new semiconductor system requires a concerted effort by the community to address technical barriers which limit performance. Due to the favorable intrinsic material properties of gallium oxide, namely, critical field strength, widely tunable conductivity, mobility, and melt-based bulk growth, the major targeted application space is power electronics where high performance is expected at low cost. This Roadmap presents the current state-of-the-art and future challenges in 15 different topics identified by a large number of people active within the gallium oxide research community. Addressing these challenges will enhance the state-of-the-art device performance and allow us to design efficient, high-power, commercially scalable microelectronic systems using the newest semiconductor platform.

Found 
Found 

Top-30

Journals

10
20
30
40
50
60
Applied Physics Letters
52 publications, 12.21%
Journal of Applied Physics
29 publications, 6.81%
Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
24 publications, 5.63%
APL Materials
20 publications, 4.69%
IEEE Transactions on Electron Devices
19 publications, 4.46%
Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
14 publications, 3.29%
IEEE Electron Device Letters
10 publications, 2.35%
Materials Science in Semiconductor Processing
9 publications, 2.11%
ECS Journal of Solid State Science and Technology
8 publications, 1.88%
Applied Physics Express
8 publications, 1.88%
AIP Advances
7 publications, 1.64%
Journal of Materials Chemistry C
7 publications, 1.64%
Crystals
6 publications, 1.41%
Physical Review B
6 publications, 1.41%
Journal Physics D: Applied Physics
6 publications, 1.41%
ACS Applied Electronic Materials
6 publications, 1.41%
ACS applied materials & interfaces
5 publications, 1.17%
Applied Surface Science
5 publications, 1.17%
Materials Today Physics
5 publications, 1.17%
Physica B: Condensed Matter
4 publications, 0.94%
Journal of Electronic Materials
4 publications, 0.94%
Microelectronics Journal
4 publications, 0.94%
Advanced Electronic Materials
4 publications, 0.94%
Physica Status Solidi (B): Basic Research
4 publications, 0.94%
Journal of Vacuum Science and Technology B
3 publications, 0.7%
Nature Communications
3 publications, 0.7%
Semiconductor Science and Technology
3 publications, 0.7%
Crystal Growth and Design
3 publications, 0.7%
Micro and Nanostructures
3 publications, 0.7%
10
20
30
40
50
60

Publishers

20
40
60
80
100
120
AIP Publishing
115 publications, 27%
Elsevier
60 publications, 14.08%
Institute of Electrical and Electronics Engineers (IEEE)
60 publications, 14.08%
American Vacuum Society
28 publications, 6.57%
American Chemical Society (ACS)
22 publications, 5.16%
IOP Publishing
22 publications, 5.16%
Springer Nature
21 publications, 4.93%
Wiley
21 publications, 4.93%
Japan Society of Applied Physics
17 publications, 3.99%
MDPI
13 publications, 3.05%
Royal Society of Chemistry (RSC)
13 publications, 3.05%
American Physical Society (APS)
11 publications, 2.58%
The Electrochemical Society
9 publications, 2.11%
American Association for the Advancement of Science (AAAS)
2 publications, 0.47%
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
1 publication, 0.23%
World Scientific
1 publication, 0.23%
Taylor & Francis
1 publication, 0.23%
Annual Reviews
1 publication, 0.23%
Gazi University Journal of Science
1 publication, 0.23%
Bentham Science Publishers Ltd.
1 publication, 0.23%
World Scientific and Engineering Academy and Society (WSEAS)
1 publication, 0.23%
Science in China Press
1 publication, 0.23%
SPIE-Intl Soc Optical Eng
1 publication, 0.23%
Optica Publishing Group
1 publication, 0.23%
20
40
60
80
100
120
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
428
Share
Cite this
GOST |
Cite this
GOST Copy
Green A. J. et al. β-Gallium oxide power electronics // APL Materials. 2022. Vol. 10. No. 2. p. 29201.
GOST all authors (up to 50) Copy
Green A. J., Speck J., Xing G., Moens P., Allerstam F., Gumaelius K., Neyer T., Arias Purdue A., Mehrotra V., Kuramata A., Sasaki K., Watanabe S., Koshi K., Blevins J., Bierwagen O., Krishnamoorthy S., Leedy K., Arehart A. R., Neal A. T., Mou S., Ringel S. A., Kumar A., Sharma A., Ghosh K., Singisetti U., Li W., Chabak K., Liddy K., Islam A. E., Rajan S., Graham S., Choi S., Cheng Z., Higashiwaki M. β-Gallium oxide power electronics // APL Materials. 2022. Vol. 10. No. 2. p. 29201.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1063/5.0060327
UR - https://doi.org/10.1063/5.0060327
TI - β-Gallium oxide power electronics
T2 - APL Materials
AU - Green, Andrew J
AU - Speck, James
AU - Xing, Grace
AU - Moens, Peter
AU - Allerstam, Fredrik
AU - Gumaelius, Krister
AU - Neyer, Thomas
AU - Arias Purdue, Andrea
AU - Mehrotra, Vivek
AU - Kuramata, Akito
AU - Sasaki, Kohei
AU - Watanabe, Shinya
AU - Koshi, Kimiyoshi
AU - Blevins, John
AU - Bierwagen, O
AU - Krishnamoorthy, Sriram
AU - Leedy, Kevin
AU - Arehart, Aaron R
AU - Neal, Adam T
AU - Mou, Shin
AU - Ringel, Steven A
AU - Kumar, Avinash
AU - Sharma, Ankit
AU - Ghosh, Krishnendu
AU - Singisetti, Uttam
AU - Li, Wenshen
AU - Chabak, Kelson
AU - Liddy, Kyle
AU - Islam, Ahmad E.
AU - Rajan, Siddharth
AU - Graham, Samuel
AU - Choi, Sukwon
AU - Cheng, Zhe
AU - Higashiwaki, Masataka
PY - 2022
DA - 2022/02/01
PB - AIP Publishing
SP - 29201
IS - 2
VL - 10
SN - 2166-532X
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2022_Green,
author = {Andrew J Green and James Speck and Grace Xing and Peter Moens and Fredrik Allerstam and Krister Gumaelius and Thomas Neyer and Andrea Arias Purdue and Vivek Mehrotra and Akito Kuramata and Kohei Sasaki and Shinya Watanabe and Kimiyoshi Koshi and John Blevins and O Bierwagen and Sriram Krishnamoorthy and Kevin Leedy and Aaron R Arehart and Adam T Neal and Shin Mou and Steven A Ringel and Avinash Kumar and Ankit Sharma and Krishnendu Ghosh and Uttam Singisetti and Wenshen Li and Kelson Chabak and Kyle Liddy and Ahmad E. Islam and Siddharth Rajan and Samuel Graham and Sukwon Choi and Zhe Cheng and Masataka Higashiwaki},
title = {β-Gallium oxide power electronics},
journal = {APL Materials},
year = {2022},
volume = {10},
publisher = {AIP Publishing},
month = {feb},
url = {https://doi.org/10.1063/5.0060327},
number = {2},
pages = {29201},
doi = {10.1063/5.0060327}
}
MLA
Cite this
MLA Copy
Green, Andrew J., et al. “β-Gallium oxide power electronics.” APL Materials, vol. 10, no. 2, Feb. 2022, p. 29201. https://doi.org/10.1063/5.0060327.