Journal of Physics Condensed Matter, volume 30, issue 34, pages 343001

Relaxation of nonequilibrium quasiparticles in mesoscopic size superconductors

S A Chernyaev 2
D S Lvov 3, 4
V. S. Stolyarov 3, 4
Publication typeJournal Article
Publication date2018-08-02
scimago Q2
SJR0.676
CiteScore5.3
Impact factor2.3
ISSN09538984, 1361648X
Condensed Matter Physics
General Materials Science
Abstract
Rapid development of micro- and nanofabrication methods have provoked interest and enabled experimental studies of electronic properties of a vast class of (sub)micrometer-size solid state systems. Mesoscopic-size hybrid structures, containing superconducting elements, have become interesting objects for basic research studies and various applications, ranging from medical and astrophysical sensors to quantum computing. One of the most important aspects of physics, governing the behavior of such systems, is the finite concentration of nonequilibrium quasiparticles, present in a superconductor even well below the temperature of superconducting transition. Those nonequilibrium excitations might limit the performance of a variety of superconducting devices, like superconducting qubits, single-electron turnstiles and microrefrigerators. On the contrary, in some applications, like detectors of electromagnetic radiation, the nonequilibrium state is essential for their operation. It is therefore of vital importance to study the mechanisms of nonequilibrium quasiparticle relaxation in superconductors of mesoscopic dimensions, where the whole structure can be considered as an 'interface'. At early stages of research the problem was mostly studied in relatively massive systems and at high temperatures close to the critical temperature of a superconductor. We review the recent progress in studies of nonequilibrium quasiparticle relaxation in superconductors including the low temperature limit. We also discuss the open physical questions and perspectives of development in the field.

Top-30

Journals

1
2
3
1
2
3

Publishers

1
2
3
4
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?