volume 34 issue 18 pages 183002

The 2021 room-temperature superconductivity roadmap

20
 
Publication typeJournal Article
Publication date2022-03-03
scimago Q2
wos Q3
SJR0.624
CiteScore4.6
Impact factor2.6
ISSN09538984, 1361648X
Condensed Matter Physics
General Materials Science
Abstract

Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.

In memoriam, to Neil Ashcroft, who inspired us all.

Found 
Found 

Top-30

Journals

5
10
15
20
25
30
35
40
Physical Review B
36 publications, 23.38%
Journal of Physics Condensed Matter
8 publications, 5.19%
Superconductor Science and Technology
6 publications, 3.9%
Materials Today Physics
5 publications, 3.25%
Journal of Applied Physics
4 publications, 2.6%
npj Computational Materials
4 publications, 2.6%
Journal of Physical Chemistry C
4 publications, 2.6%
Physical Review Materials
4 publications, 2.6%
Nature Communications
3 publications, 1.95%
Physical Review Letters
3 publications, 1.95%
Matter and Radiation at Extremes
2 publications, 1.3%
Nanomaterials
2 publications, 1.3%
Condensed Matter
2 publications, 1.3%
npj Quantum Materials
2 publications, 1.3%
Reviews of Modern Physics
2 publications, 1.3%
Journal of the American Chemical Society
2 publications, 1.3%
Inorganic Chemistry
2 publications, 1.3%
Journal of Physical Chemistry A
2 publications, 1.3%
Advanced Materials
2 publications, 1.3%
Communications Physics
2 publications, 1.3%
Materials
2 publications, 1.3%
Proceedings of the National Academy of Sciences of the United States of America
2 publications, 1.3%
Chemistry of Materials
2 publications, 1.3%
Chinese Physics B
2 publications, 1.3%
Annalen der Physik
2 publications, 1.3%
Crystal Growth and Design
1 publication, 0.65%
Low Temperature Physics
1 publication, 0.65%
Physica B: Condensed Matter
1 publication, 0.65%
SSRN Electronic Journal
1 publication, 0.65%
Angewandte Chemie - International Edition
1 publication, 0.65%
5
10
15
20
25
30
35
40

Publishers

5
10
15
20
25
30
35
40
45
50
American Physical Society (APS)
47 publications, 30.52%
Springer Nature
21 publications, 13.64%
IOP Publishing
21 publications, 13.64%
Elsevier
15 publications, 9.74%
American Chemical Society (ACS)
14 publications, 9.09%
Wiley
9 publications, 5.84%
AIP Publishing
8 publications, 5.19%
MDPI
7 publications, 4.55%
Royal Society of Chemistry (RSC)
3 publications, 1.95%
Proceedings of the National Academy of Sciences (PNAS)
2 publications, 1.3%
Social Science Electronic Publishing
1 publication, 0.65%
Taylor & Francis
1 publication, 0.65%
Oxford University Press
1 publication, 0.65%
Emerald
1 publication, 0.65%
American Association for the Advancement of Science (AAAS)
1 publication, 0.65%
The Royal Society
1 publication, 0.65%
Pleiades Publishing
1 publication, 0.65%
5
10
15
20
25
30
35
40
45
50
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
154
Share
Cite this
GOST |
Cite this
GOST Copy
Boeri L. et al. The 2021 room-temperature superconductivity roadmap // Journal of Physics Condensed Matter. 2022. Vol. 34. No. 18. p. 183002.
GOST all authors (up to 50) Copy
Boeri L., Hennig R., Hirschfeld P., Profeta G., Sanna A., Zurek E. D., Pickett W. E., Amsler M., Dias R. P., Eremets M., Heil C., Hemley R. J., Liu H., Ma Y., Pierleoni C., Kolmogorov A. N., Rybin N., Novoselov D. Y., Anisimov V., Oganov A. R., Pickard C. J., Bi T., Arita R., Errea I., Pellegrini C., Requist R., Gross E. K. U., Margine E. R., Xie S. R., Quan Y., Hire A. C., Fanfarillo L., Stewart G. R., Hamlin J. T., Stanev V., Gonnelli R., Piatti E., Daghero D., Daghero D., Valentí R. The 2021 room-temperature superconductivity roadmap // Journal of Physics Condensed Matter. 2022. Vol. 34. No. 18. p. 183002.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1088/1361-648X/ac2864
UR - https://doi.org/10.1088/1361-648X/ac2864
TI - The 2021 room-temperature superconductivity roadmap
T2 - Journal of Physics Condensed Matter
AU - Boeri, L.
AU - Hennig, Richard
AU - Hirschfeld, P.J.
AU - Profeta, G
AU - Sanna, Antonio
AU - Zurek, Eva D.
AU - Pickett, Warren E.
AU - Amsler, Maximilian
AU - Dias, Ranga P.
AU - Eremets, M.I.
AU - Heil, C.
AU - Hemley, R. J.
AU - Liu, Hanyu
AU - Ma, Yan-Ming
AU - Pierleoni, Carlo
AU - Kolmogorov, Aleksey N.
AU - Rybin, Nikita
AU - Novoselov, Dmitry Y.
AU - Anisimov, V
AU - Oganov, A. R.
AU - Pickard, C. J.
AU - Bi, Tiange
AU - Arita, Ryotaro
AU - Errea, Ion
AU - Pellegrini, Camilla
AU - Requist, Ryan
AU - Gross, Eberhard K. U.
AU - Margine, Elena R.
AU - Xie, Stephen R.
AU - Quan, Yundi
AU - Hire, A. C.
AU - Fanfarillo, Laura
AU - Stewart, G. R.
AU - Hamlin, James T.
AU - Stanev, Valentin
AU - Gonnelli, R.S.
AU - Piatti, Erik
AU - Daghero, D.
AU - Daghero, D.
AU - Valentí, Roser
PY - 2022
DA - 2022/03/03
PB - IOP Publishing
SP - 183002
IS - 18
VL - 34
PMID - 34544070
SN - 0953-8984
SN - 1361-648X
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2022_Boeri,
author = {L. Boeri and Richard Hennig and P.J. Hirschfeld and G Profeta and Antonio Sanna and Eva D. Zurek and Warren E. Pickett and Maximilian Amsler and Ranga P. Dias and M.I. Eremets and C. Heil and R. J. Hemley and Hanyu Liu and Yan-Ming Ma and Carlo Pierleoni and Aleksey N. Kolmogorov and Nikita Rybin and Dmitry Y. Novoselov and V Anisimov and A. R. Oganov and C. J. Pickard and Tiange Bi and Ryotaro Arita and Ion Errea and Camilla Pellegrini and Ryan Requist and Eberhard K. U. Gross and Elena R. Margine and Stephen R. Xie and Yundi Quan and A. C. Hire and Laura Fanfarillo and G. R. Stewart and James T. Hamlin and Valentin Stanev and R.S. Gonnelli and Erik Piatti and D. Daghero and D. Daghero and Roser Valentí},
title = {The 2021 room-temperature superconductivity roadmap},
journal = {Journal of Physics Condensed Matter},
year = {2022},
volume = {34},
publisher = {IOP Publishing},
month = {mar},
url = {https://doi.org/10.1088/1361-648X/ac2864},
number = {18},
pages = {183002},
doi = {10.1088/1361-648X/ac2864}
}
MLA
Cite this
MLA Copy
Boeri, L., et al. “The 2021 room-temperature superconductivity roadmap.” Journal of Physics Condensed Matter, vol. 34, no. 18, Mar. 2022, p. 183002. https://doi.org/10.1088/1361-648X/ac2864.