Science Signaling, volume 15, issue 752

Clearance of small intestinal crypts involves goblet cell mucus secretion by intracellular granule rupture and enterocyte ion transport

Publication typeJournal Article
Publication date2022-09-20
scimago Q1
SJR2.341
CiteScore9.5
Impact factor6.7
ISSN19450877, 19379145
Biochemistry
Molecular Biology
Cell Biology
Abstract

Goblet cells in the small intestinal crypts contain large numbers of mucin granules that are rapidly discharged to clean bacteria from the crypt. Because acetylcholine released by neuronal and nonneuronal cells controls many aspects of intestinal epithelial function, we used tissue explants and organoids to investigate the response of the small intestinal crypt to cholinergic stimulation. The activation of muscarinic acetylcholine receptors initiated a coordinated and rapid emptying of crypt goblet cells that flushed the crypt contents into the intestinal lumen. Cholinergic stimulation induced an expansion of the granule contents followed by intracellular rupture of the mucin granules. The mucus expanded intracellularly before the rupture of the goblet cell apical membrane and continued to expand after its release into the crypt lumen. The goblet cells recovered from membrane rupture and replenished their stores of mucin granules. Mucus secretion from the goblet cells depended on Ca 2+ signaling and the expansion of the mucus in the crypt depended on gap junctions and on ion and water transport by enterocytes adjacent to the goblet cells. This distinctive mode of mucus secretion, which we refer to as “expanding secretion,” efficiently cleans the small intestine crypt through coordinated mucus, ion, and fluid secretion by goblet cells and enterocytes.

Nyström E.E., Martinez-Abad B., Arike L., Birchenough G.M., Nonnecke E.B., Castillo P.A., Svensson F., Bevins C.L., Hansson G.C., Johansson M.E.
Science scimago Q1 wos Q1 Open Access
2021-04-16 citations by CoLab: 208 PDF Abstract  
Goblet cell diversity An adult human has a gut surface area averaging 30 square meters that is bombarded daily by xenobiotics and microorganisms. Mucus synthesized by goblet cells supplies a protective barrier coating. Nyström et al. discovered that goblet cells are not all the same along the length of the gut; rather, they form different functional populations depending on location. Small-intestine mucus is laced with antimicrobial peptides and is permeable to small molecules; downstream, thicker mucus is generated that excludes bacteria and xenobiotics. Mucus oozes in thick plumes from goblet cells within the crypts to shield the stem cell niche. Between the crypts lie highly differentiated goblet cells producing permeable mucus. Together, both types of mucus form a network that shelters the gut epithelium. If, however, the intercrypt goblet cells become dysfunctional, the exposed epithelium is exposed to bacteria and vulnerable to developing colitis. Science , this issue p. eabb1590
Javitt G., Khmelnitsky L., Albert L., Bigman L.S., Elad N., Morgenstern D., Ilani T., Levy Y., Diskin R., Fass D.
Cell scimago Q1 wos Q1
2020-10-07 citations by CoLab: 102 Abstract  
Summary The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.
Koumangoye R., Omer S., Kabeer M.H., Delpire E.
2020-01-01 citations by CoLab: 23 Abstract  
Infections resulting from intestinal yeast and bacteria affect a large number of patients with deficits in absorptive or secretory epithelial transport mechanisms. The basolateral Na+-K+-2Cl- cotransporter (NKCC1) has been implicated in intestinal epithelial fluid secretion. Two patients with deleterious heterozygous (NKCC1-DFX, DFX for Asp-Phe-stop codon) or homozygous (Kilquist) mutations in SLC12A2 (NKCC1) suffered from gastrointestinal deficits. Because of chronic infections, the colon and the small intestine of the NKCC1-DFX patient were resected surgically.To investigate how NKCC1 affects the integrity and function of the gut epithelia, we used a mouse model recapitulating the NKCC1-DFX patient mutation. Electron microscopy and immunostaining were used to analyze the integrity of the colonic mucus layers and immune cell infiltration. Fluorescence in situ hybridization was performed on the distal colon sections to measure bacteria translocation to the mucosa and submucosa. Citrobacter rodentium was used to measure mouse ability to clear enteric infection. A multiplex cytokine assay was used to analyze mouse inflammatory response to infection.We show that NKCC1-DFX expression causes defective goblet cell mucus granule exocytosis, leading to secretion of intact granules into the lumen of the large intestine. In addition, NKCC1-DFX colon submucosal glands secrete mucus that remained attached to the epithelium. Importantly, expression of the mutant NKCC1 or complete loss of NKCC1 function leads to aggravated inflammatory response to C rodentium infection. Compared with wild-type, NKCC1-DFX mice showed decreased expression of claudin-2, a tight junction protein involved in paracellular Na+ and water transport and enteric infection clearance.Our data indicate that NKCC1-DFX impairs gut barrier function by affecting mucus secretion and immune properties.
Vega G., Guequén A., Johansson M.E., Arike L., Martínez-Abad B., Nyström E.E., Scudieri P., Pedemonte N., Millar-Büchner P., Philp A.R., Galietta L.J., Hansson G.C., Flores C.A.
Frontiers in Physiology scimago Q2 wos Q2 Open Access
2019-06-13 citations by CoLab: 7 PDF Abstract  
Calcium-activated anion secretion is expected to ameliorate cystic fibrosis, a genetic disease that carries an anion secretory defect in exocrine tissues. Human patients and animal models of the disease that present a mild intestinal phenotype have been postulated to bear a compensatory calcium-activated anion secretion in the intestine. TMEM16A is calcium-activated anion channel whose presence in the intestinal epithelium is contradictory. We aim to test the functional expression of TMEM16A using animal models with Cftr and/or Tmem16a intestinal silencing. Expression of TMEM16A was studied in a wild type and intestinal Tmem16a knockout mice by mRNA-seq, mass-spectrometry, q-PCR, Western blotting and immunolocalization. Calcium-activated anion secretion was recorded in the ileum and proximal colon of these animals including intestinal Cftr knockout and double mutants with dual Tmem16a and Cftr intestinal ablation. Mucus homeostasis was studied by immune-analysis of Mucin-2 (Muc2) and survival curves were recorded. Tmem16a transcript was found in intestine. Nevertheless, protein was barely detected in colon samples. Electrophysiological measurements demonstrated that the intestinal deletion of Tmem16a did not change calcium-activated anion secretion induced by carbachol or ATP in ileum and proximal colon. Muc2 architecture was not altered by Tmem16a silencing as was observed when Cftr was deleted from mouse intestine. Tmem16a silencing neither affected animal survival nor modified the lethality observed in the intestinal Cftr-null mouse. Our results demonstrate that TMEM16A function in the murine intestine is not related to electrogenic ion transport and does not affect mucus homeostasis and survival of animals.
Stuart T., Butler A., Hoffman P., Hafemeister C., Papalexi E., Mauck W.M., Hao Y., Stoeckius M., Smibert P., Satija R.
Cell scimago Q1 wos Q1
2019-06-06 citations by CoLab: 11610
Sanchez E., Gonzalez E.A., Moreno D.S., Cardenas R.A., Ramos M.A., Davalos A.J., Manllo J., Rodarte A.I., Petrova Y., Moreira D.C., Chavez M.A., Tortoriello A., Lara A., Gutierrez B.A., Burns A.R., et. al.
Journal of Biological Chemistry scimago Q1 wos Q2 Open Access
2019-03-01 citations by CoLab: 29 Abstract  
Mast cells (MCs) participate in allergy, inflammation, and defense against pathogens. They release multiple immune mediators via exocytosis, a process that requires SNARE proteins, including syntaxins (Stxs). The identity of the Stxs involved in MC exocytosis remains controversial. Here, we studied the roles of Stx3 and -4 in fully developed MCs from conditional knockout mice by electrophysiology and EM, and found that Stx3, and not Stx4, is crucial for MC exocytosis. The main defect seen in Stx3-deficient MCs was their inability to engage multigranular compound exocytosis, while leaving most single-vesicle fusion events intact. We used this defect to show that this form of exocytosis is not only required to accelerate MC degranulation but also essential to achieve full degranulation. The exocytic defect was severe but not absolute, indicating that an Stx other than Stx3 and -4 is also required for exocytosis in MCs. The removal of Stx3 affected only regulated exocytosis, leaving other MC effector responses intact, including the secretion of cytokines via constitutive exocytosis. Our in vivo model of passive systemic anaphylaxis showed that the residual exocytic function of Stx3-deficient MCs was sufficient to drive a full anaphylactic response in mice.
Jaramillo A.M., Azzegagh Z., Tuvim M.J., Dickey B.F.
2018-11-15 citations by CoLab: 48 Abstract  
Exocytosis of secreted mucins is the final step in their intracellular processing, resulting in their release into the airway lumen to interact with water and ions to form mucus. Mucins are secreted at a low baseline rate and a high stimulated rate, and both rates are regulated by second messengers acting on components of the exocytic machinery. The principal physiologic function of the low baseline rate is to support steady-state mucociliary clearance of inhaled particles and pathogens that enter the airways during normal breathing. Even in the setting of mucin hyperproduction, baseline secretion generally does not induce mucus occlusion. The principal physiologic function of the high stimulated rate of secretion from both submucosal glands and surface goblet cells in proximal airways appears to be to sweep away larger particles, whereas in distal airways it appears to act in concert with mucin hyperproduction to induce mucus occlusion to trap migrating helminths. Pathophysiologically, stimulated mucin secretion in the setting of mucin hyperproduction from allergic or other types of airway inflammation in the absence of helminth infection causes airflow obstruction and infection. Molecular components of the mucin exocytic machinery are increasingly being identified, and surprisingly, many components are not shared between baseline and stimulated machines. The physiologic significance of the presence of two distinct molecular machines is not yet known, such as whether these interact selectively with secretory granules of different sizes or contents. A full understanding of the mechanism and regulation of airway mucin secretion will provide further insight into pathophysiologic processes and may identify therapeutic strategies to alleviate obstructive airway diseases.
Biton M., Haber A.L., Rogel N., Burgin G., Beyaz S., Schnell A., Ashenberg O., Su C., Smillie C., Shekhar K., Chen Z., Wu C., Ordovas-Montanes J., Alvarez D., Herbst R.H., et. al.
Cell scimago Q1 wos Q1
2018-11-01 citations by CoLab: 460 Abstract  
In the small intestine, a niche of accessory cell types supports the generation of mature epithelial cell types from intestinal stem cells (ISCs). It is unclear, however, if and how immune cells in the niche affect ISC fate or the balance between self-renewal and differentiation. Here, we use single-cell RNA sequencing (scRNA-seq) to identify MHC class II (MHCII) machinery enrichment in two subsets of Lgr5+ ISCs. We show that MHCII+ Lgr5+ ISCs are non-conventional antigen-presenting cells in co-cultures with CD4+ T helper (Th) cells. Stimulation of intestinal organoids with key Th cytokines affects Lgr5+ ISC renewal and differentiation in opposing ways: pro-inflammatory signals promote differentiation, while regulatory cells and cytokines reduce it. In vivo genetic perturbation of Th cells or MHCII expression on Lgr5+ ISCs impacts epithelial cell differentiation and IEC fate during infection. These interactions between Th cells and Lgr5+ ISCs, thus, orchestrate tissue-wide responses to external signals.
Stahl M., Tremblay S., Montero M., Vogl W., Xia L., Jacobson K., Menendez A., Vallance B.A.
2018-08-01 citations by CoLab: 21 Abstract  
Paneth cells are a key subset of secretory epithelial cells found at the base of small intestinal crypts. Unlike intestinal goblet cells, which secrete the mucin Muc2, Paneth cells are best known for producing an array of antimicrobial factors. We unexpectedly identified Muc2 staining localized around Paneth cell granules. Electron microscopy (EM) confirmed an electron lucent halo around these granules, which was lost in Paneth cells from Muc2-deficient (−/−) mice. EM and immunostaining for lysozyme revealed that Muc2−/− Paneth cells contained larger, more densely packed granules within their cytoplasm, and we detected defects in the transcription of key antimicrobial genes in the ileal tissues of Muc2−/− mice. Enteroids derived from the small intestine of wild-type and Muc2−/− mice revealed phenotypic differences in Paneth cells similar to those seen in vivo. Moreover, lysozyme-containing granule release from Muc2−/− enteroid Paneth cells was shown to be impaired. Surprisingly, Paneth cells within human ileal and duodenal tissues were found to be Muc2 negative. Thus Muc2 plays an important role in murine Paneth cells, suggesting links in function with goblet cells; however human Paneth cells lack Muc2, highlighting that caution should be applied when linking murine to human Paneth cell functions. NEW & NOTEWORTHY We demonstrate for the first time that murine Paneth cell granules possess a halo comprised of the mucin Muc2. The presence of Muc2 exerts an impact on Paneth cell granule size and number and facilitates the release and dispersal of antimicrobials into the mucus layer. Interestingly, despite the importance of Muc2 in murine Paneth cell function, our analysis of Muc2 in human intestinal tissues revealed no trace of Muc2 expression by human Paneth cells.
Lutter L., Hoytema van Konijnenburg D.P., Brand E.C., Oldenburg B., van Wijk F.
2018-07-04 citations by CoLab: 52 Abstract  
The epithelial barrier of the gastrointestinal tract is home to numerous intraepithelial T cells (IETs). IETs are functionally adapted to the mucosal environment and are among the first adaptive immune cells to encounter microbial and dietary antigens. They possess hallmark features of tissue-resident T cells: they are long-lived nonmigratory cells capable of rapidly responding to antigen challenges independent of T cell recruitment from the periphery. Gut-resident T cells have been implicated in the relapsing and remitting course and persisting low-grade inflammation of chronic gastrointestinal diseases, including IBD and coeliac disease. So far, most data IETs have been derived from experimental animal models; however, IETs and the environmental makeup differ between mice and humans. With advances in techniques, the number of human studies has grown exponentially in the past 5 years. Here, we review the literature on the involvement of human IETs in gut homeostasis and inflammation, and how these cells are influenced by the microbiota and dietary antigens. Finally, targeting of IETs in therapeutic interventions is discussed. Broad insight into the function and role of human IETs in gut homeostasis and inflammation is essential to identify future diagnostic, prognostic and therapeutic strategies. Intraepithelial T cells (IETs) are a unique collection of T cells located at the epithelial barrier. This Review highlights the role of these cells in gut homeostasis and disease, including coeliac disease and IBD. Targeting of IETs in therapeutic interventions is also discussed.
Labed S.A., Wani K.A., Jagadeesan S., Hakkim A., Najibi M., Irazoqui J.E.
Immunity scimago Q1 wos Q1
2018-05-15 citations by CoLab: 69 Abstract  
Regulated antimicrobial peptide expression in the intestinal epithelium is key to defense against infection and to microbiota homeostasis. Understanding the mechanisms that regulate such expression is necessary for understanding immune homeostasis and inflammatory disease and for developing safe and effective therapies. We used Caenorhabditis elegans in a preclinical approach to discover mechanisms of antimicrobial gene expression control in the intestinal epithelium. We found an unexpected role for the cholinergic nervous system. Infection-induced acetylcholine release from neurons stimulated muscarinic signaling in the epithelium, driving downstream induction of Wnt expression in the same tissue. Wnt induction activated the epithelial canonical Wnt pathway, resulting in the expression of C-type lectin and lysozyme genes that enhanced host defense. Furthermore, the muscarinic and Wnt pathways are linked by conserved transcription factors. These results reveal a tight connection between the nervous system and the intestinal epithelium, with important implications for host defense, immune homeostasis, and cancer.
Schneider H., Pelaseyed T., Svensson F., Johansson M.E.
Scientific Reports scimago Q1 wos Q1 Open Access
2018-04-10 citations by CoLab: 77 PDF Abstract  
Mucins are highly glycosylated proteins which protect the epithelium. In the small intestine, the goblet cell-secreted Muc2 mucin constitutes the main component of the loose mucus layer that traps luminal material. The transmembrane mucin Muc17 forms part of the carbohydrate-rich glycocalyx covering intestinal epithelial cells. Our study aimed at investigating the turnover of these mucins in the small intestine by using in vivo labeling of O-glycans with N-azidoacetylgalactosamine. Mice were injected intraperitoneally and sacrificed every hour up to 12 hours and at 24 hours. Samples were fixed with preservation of the mucus layer and stained for Muc2 and Muc17. Turnover of Muc2 was slower in goblet cells of the crypts compared to goblet cells along the villi. Muc17 showed stable expression over time at the plasma membrane on villi tips, in crypts and at crypt openings. In conclusion, we have identified different subtypes of goblet cells based on their rate of mucin biosynthesis and secretion. In order to protect the intestinal epithelium from chemical and bacterial hazards, fast and frequent renewal of the secreted mucus layer in the villi area is combined with massive secretion of stored Muc2 from goblet cells in the upper crypt.
Butler A., Hoffman P., Smibert P., Papalexi E., Satija R.
Nature Biotechnology scimago Q1 wos Q1
2018-04-02 citations by CoLab: 10082 Abstract  
Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.
Trillo-Muyo S., Nilsson H.E., Recktenwald C.V., Ermund A., Ridley C., Meiss L.N., Bähr A., Klymiuk N., Wine J.J., Koeck P.J., Thornton D.J., Hebert H., Hansson G.C.
Journal of Biological Chemistry scimago Q1 wos Q2 Open Access
2018-04-01 citations by CoLab: 56 Abstract  
Most MUC5B mucin polymers in the upper airways of humans and pigs are produced by submucosal glands. MUC5B forms N-terminal covalent dimers that are further packed into larger assemblies because of low pH and high Ca2+ in the secretory granule of the mucin-producing cell. We purified the recombinant MUC5B N-terminal covalent dimer and used single-particle electron microscopy to study its structure under intracellular conditions. We found that, at intragranular pH, the dimeric MUC5B organized into head-to-head noncovalent tetramers where the von Willebrand D1-D2 domains hooked into each other. These N-terminal tetramers further formed long linear complexes from which, we suggest, the mucin domains and their C termini project radially outwards. Using conventional and video microscopy, we observed that, upon secretion into the submucosal gland ducts, a flow of bicarbonate-rich fluid passes the mucin-secreting cells. We suggest that this unfolds and pulls out the MUC5B assemblies into long linear threads. These further assemble into thicker mucin bundles in the glandular ducts before emerging at the gland duct opening. We conclude that the combination of intracellular packing of the MUC5B mucin and the submucosal gland morphology creates an efficient machine for producing linear mucin bundles.
Yoo B.B., Mazmanian S.K.
Immunity scimago Q1 wos Q1
2017-06-21 citations by CoLab: 351 Abstract  
Interactions between the nervous and immune systems enable the gut to respond to the variety of dietary products that it absorbs, the broad spectrum of pathogens that it encounters, and the diverse microbiome that it harbors. The enteric nervous system (ENS) senses and reacts to the dynamic ecosystem of the gastrointestinal (GI) tract by translating chemical cues from the environment into neuronal impulses that propagate throughout the gut and into other organs in the body, including the central nervous system (CNS). This review will describe the current understanding of the anatomy and physiology of the GI tract by focusing on the ENS and the mucosal immune system. We highlight emerging literature that the ENS is essential for important aspects of microbe-induced immune responses in the gut. Although most basic and applied research in neuroscience has focused on the brain, the proximity of the ENS to the immune system and its interface with the external environment suggest that novel paradigms for nervous system function await discovery.
Duan M., Wang Y., Chen S., Lu J., Dong R., Yu Q., Xie J., Chen Y.
Foods scimago Q1 wos Q1 Open Access
2025-01-12 citations by CoLab: 0 PDF Abstract  
Bisphenol A (BPA) and diisobutyl (DIBP) phthalate are widely used as typical plasticizers in food packaging. Plasticizers can be released from polymers, migrate into food, and be ingested by humans, leading to various health problems. However, little research has investigated the combined toxicity of BPA and DIBP, particularly their intestinal toxicity. Our goal is to analyse the combined toxicity of BPA (50 mg/kg) and DIBP (500 mg/kg) on the intestines of KM mice. Additionally, we tried to find natural products that can inhibit or prevent the combined toxicity of BPA and DIBP. The results indicated that the combination of BPA and DIBP exposure resulted in a reduction of beneficial flora, an increase in D-Lac levels (136 ± 14 μmol/L), an increase in intestinal permeability, activation of the notch pathway, and a decline in intestinal stem cells (ISCs) to goblet cells, compared to single-exposure sources. Nevertheless, Rubus chingii Hu phenolic extract (RHPE) (200, 400 and 600 mg/kg) ameliorated the BPA and DIBP-induced intestinal microbiota disruption and intestinal mucosal barrier impairment by inhibiting the overactivation of the notch pathway. The results of this study highlight the potential risks to human health posed by the combination of BPA and DIBP and may help explain the potential pathways of enterotoxicity caused by combined ingestion.
Pelaseyed T., Johansson M.E., Hansson G.C.
2024-12-12 citations by CoLab: 0
Zhou J.Y., Lu Q., Hu Y., Fujji S., Espenschied S.T., Engelhart M.J., Lewis K.J., Karell P.E., Han Y.T., Shin H., Schmidt R.E., Silver D.J., Ivanov A., Yilmaz O.H., Stappenbeck T.
2024-11-03 citations by CoLab: 0 Abstract  
ABSTRACTModulation of immune tone at mucosal surfaces is critical to maintain homeostasis while facilitating the handling of emerging threats. One dynamic component of immune modulation is the phagocytosis and clearance of apoptotic bodies known as efferocytosis that inhibits inflammation by promoting its resolution. Here, we evaluated the effects of apoptotic body phagocytosis by intestinal epithelial stem and progenitor cells (ISCs). Unexpectedly, instead of immunomodulation through efferocytosis, this process elevated local immune system activity. To achieve this result, ISCs actively engaged apoptotic bodies in a unique fashion, leading to their engulfment and ultimate delivery to lysosomes for processing. We found that ISCs were capable of actively recruiting inert material such as apoptotic bodies by using actin-based intrinsic biomechanical processes. Uptake of apoptotic bodies was facilitated by complement factor C3 produced by apoptotic bodies themselves. ISCs in turn generated signals heightening T cell activity that was driven in part by ISC-generated TNF. Taken together, uptake of apoptotic bodies by ISCs produced a local inflammatory alert to specific immune cells. This altered paradigm for the response to phagocytosed apoptotic bodies fits the needs of active mucosal surfaces and demonstrates that efferocytosis as currently defined is not a universal response of all cell types.
Vllahu M., Voli A., Licursi V., Zagami C., D’Amore A., Traulsen J., Woelffling S., Schmid M., Crickley R., Lisle R., Link A., Tosco A., Meyer T.F., Boccellato F.
Gut Microbes scimago Q1 wos Q1 Open Access
2024-09-08 citations by CoLab: 1 PDF
Ljungholm P.L., Ermund A., Söderlund Garsveden M.M., Pettersson V.L., Gustafsson J.K.
2024-06-03 citations by CoLab: 1 Abstract  
SummaryThe intestinal epithelium is covered by mucus that protects the tissue from the luminal content. Studies have shown that anion secretion via the cystic fibrosis conductance regulator (Cftr) regulates mucus formation in the small intestine. However, mechanisms regulating mucus formation in the colon are less understood. The aim of this study was to explore the role of anion transport in the regulation of mucus formation during steady state and in response to carbamylcholine (CCh) and prostaglandin E2 (PGE2). The broad-spectrum anion transport inhibitor 4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS), CftrdF508 (CF) mice, and the slc26a3 inhibitor SLC26A3-IN-2 were used to inhibit anion transport. In the distal colon, steady-state mucus expansion was reduced by SLC26A3-IN-2 and normal in CF mice. PGE2 stimulated mucus expansion without de novo mucus release in wild type (WT) and CF colon via slc26a3 sensitive mechanisms, while CCh induced de novo mucus secretion in WT but not in CF colon. However, when added simultaneously, CCh and PGE2 stimulated de novo mucus secretion in the CF colon via DIDS-sensitive pathways. A similar response was observed in CF ileum that responded to CCh and PGE2 with DIDS-sensitive de novo mucus secretion. In conclusion, this study suggests that slc26a3 regulates colonic mucus expansion, while Cftr regulates CCh-induced de novo mucus secretion from ileal and distal colon crypts. Furthermore, these findings demonstrate that in the absence of a functional Cftr channel, parallel stimulation with CCh and PGE2 activates additional anion transport processes that help release mucus from intestinal goblet cells.
Erbay I.H., Alexiadis A., Rochev Y.
2024-06-01 citations by CoLab: 0 Abstract  
Colonic motility plays a vital role in maintaining proper digestive function. The rhythmic contractions and relaxations facilitate various types of motor functions that generate both propulsive and non-propulsive motility modes which in turn generate shear stresses on the epithelial surface. However, the interplay between colonic mucus, shear stress, and epithelium remains poorly characterized. Here, we present a colonic computational model that describes the potential roles of mucus and shear stress in both homeostasis and ulcerative colitis (UC). Our model integrates several key features, including the properties of the mucus bilayer and faeces, intraluminal pressure, and crypt characteristics to predict the time-space mosaic of shear stress. We show that the mucus thickness which could vary based on the severity of UC, may significantly reduce the amount of shear stress applied to the colonic crypts and effect faecal velocity. Our model also reveals an important spatial shear stress variance in homeostatic colonic crypts that suggests shear stress may have a modulatory role in epithelial cell migration, differentiation, apoptosis, and immune surveillance. Together, our study uncovers the rather neglected roles of mucus and shear stress in intestinal cellular processes during homeostasis and inflammation.
Emanuel E., Arifuzzaman M., Artis D.
2024-05-01 citations by CoLab: 5 Abstract  
Abstract The epithelial lining of the respiratory tract and intestine provides a critical physical barrier to protect host tissues against environmental insults including dietary antigens, allergens, chemicals, and microorganisms. In addition, specialized epithelial cells directly communicate with hematopoietic and neuronal cells. These epithelial-immune and epithelial-neuronal interactions control host immune responses and have important implications for inflammatory conditions associated with defects in the epithelial barrier, including asthma, allergy, and inflammatory bowel diseases (IBD). In this review, we discuss emerging research that identifies the mechanisms and impact of epithelial-immune and epithelial-neuronal crosstalk in regulating immunity, inflammation, and tissue homeostasis at mucosal barrier surfaces. Understanding the regulation and impact of these pathways could provide new therapeutic targets for inflammatory diseases at mucosal sites.
Prochera A., Muppirala A.N., Kuziel G.A., Soualhi S., Shepherd A., Sun L., Issac B., Rosenberg H.J., Karim F., Perez K., Smith K.H., Archibald T.H., Rakoff-Nahoum S., Hagen S.J., Rao M.
2024-04-19 citations by CoLab: 1 Abstract  
AbstractGlial cells of the enteric nervous system (ENS) interact closely with the intestinal epithelium and secrete signals that influence epithelial cell proliferation and barrier formationin vitro. Whether these interactions are importantin vivo,however, is unclear because previous studies reached conflicting conclusions [1]. To better define the roles of enteric glia in steady state regulation of the intestinal epithelium, we characterized the glia in closest proximity to epithelial cells and found that the majority expressPLP1in both mice and humans. To test their functions using an unbiased approach, we genetically depleted PLP1+cells in mice and transcriptionally profiled the small and large intestines. Surprisingly, glial loss had minimal effects on transcriptional programs and the few identified changes varied along the gastrointestinal tract. In the ileum, where enteric glia had been considered most essential for epithelial integrity, glial depletion did not drastically alter epithelial gene expression but caused a modest enrichment in signatures of Paneth cells, a secretory cell type important for innate immunity. In the absence of PLP1+glia, Paneth cell number was intact, but a subset appeared abnormal with irregular and heterogenous cytoplasmic granules, suggesting a secretory deficit. Consistent with this possibility, ileal explants from glial-depleted mice secreted less functional lysozyme than controls with corresponding effects on fecal microbial composition. Collectively, these data suggest that enteric glia do not exert broad effects on the intestinal epithelium but have an essential role in regulating Paneth cell function and gut microbial ecology.
Ljungholm P.L., Ermund A., Garsveden M.M., Pettersson V.L., Gustafsson J.K.
2024-03-20 citations by CoLab: 0 Abstract  
SummaryThe intestinal epithelium is covered by mucus that protects the tissue from the luminal content. Studies have shown that anion secretion via the cystic fibrosis conductance regulator (Cftr) regulates mucus formation in the small intestine. However, mechanisms regulating mucus formation in the colon are less understood. The aim of this study was to explore the role of anion transport in regulation of mucus formation during steady state, and in response to carbamylcholine (CCh) and prostaglandin E2(PGE2). CftrΔF508 (CF) mice were used to assess the role of Cftr, and 4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS) was used to inhibit anion exchange. In the distal colon, steady state mucus expansion was reduced by apical DIDS, and normal in CF mice. PGE2stimulated mucus expansion withoutde novomucus secretion in wild type (WT) and CF distal colon via DIDS sensitive mechanisms, while CCh inducedde novomucus secretion in WT but not in CF colon. However, when added simultaneously, CCh and PGE2, stimulatedde novomucus secretion in CF colon via DIDS sensitive pathways. A similar response was observed in CF ileum that responded to CCh and PGE2with DIDS sensitivede novomucus secretion. In conclusion, this study suggests that apical anion exchange regulates intestinal mucus expansion, while Cftr regulatesde novomucus secretion from ileal and distal colon crypts. Furthermore, these findings demonstrate that in the absence of a functional Cftr channel, activation of anion exchange can help release mucus from intestinal goblet cells.
Wang Y., Lou R., Zhang Z., Xiao C., Yu S., Wei S., Liu Y., Fu W., Li B., Chen Y.
Science advances scimago Q1 wos Q1 Open Access
2023-10-27 citations by CoLab: 9 PDF Abstract  
Bone morphogenic protein (BMP) signaling is critical for intestinal development, homeostasis, and function performance. Although the function of BMP signaling in the intestinal epithelium is well appreciated, the direct effect of BMP on intestinal stromal cells is poorly understood. Here, we show that disruption of BMP signaling by genetic ablation of Alk3 or Smad4 expands the stromal cell pool, the mucosa tumefaction, and colonic polyposis in the large intestine. Interleukin (IL) secretion by stromal cells is notably increased, including IL-1, IL-11, and IL-17. Specifically, IL-1 and IL-17a hyperactivate the mucin production by goblet cells through nuclear factor κB signaling, and abnormal mucin accumulation results in the morphological changes, epithelial barrier destruction, and polyposis development. Together, our results provide an insight into the role of BMP signaling in intestinal stromal cells to regulate epithelium function. This study further highlights the role of mucin-producing goblet cells in intestinal homeostasis and colitis development.
Petsakou A., Liu Y., Liu Y., Comjean A., Hu Y., Perrimon N.
Nature scimago Q1 wos Q1
2023-09-18 citations by CoLab: 19 Abstract  
A fundamental and unresolved question in regenerative biology is how tissues return to homeostasis after injury. Answering this question is essential for understanding the aetiology of chronic disorders such as inflammatory bowel diseases and cancer1. We used the Drosophila midgut2 to investigate this and discovered that during regeneration a subpopulation of cholinergic3 neurons triggers Ca2+ currents among intestinal epithelial cells, the enterocytes, to promote return to homeostasis. We found that downregulation of the conserved cholinergic enzyme acetylcholinesterase4 in the gut epithelium enables acetylcholine from specific Egr5 (TNF in mammals)-sensing cholinergic neurons to activate nicotinic receptors in innervated enterocytes. This activation triggers high Ca2+, which spreads in the epithelium through Innexin2–Innexin7 gap junctions6, promoting enterocyte maturation followed by reduction of proliferation and inflammation. Disrupting this process causes chronic injury consisting of ion imbalance, Yki (YAP in humans) activation7, cell death and increase of inflammatory cytokines reminiscent of inflammatory bowel diseases8. Altogether, the conserved cholinergic pathway facilitates epithelial Ca2+ currents that heal the intestinal epithelium. Our findings demonstrate nerve- and bioelectric9-dependent intestinal regeneration and advance our current understanding of how a tissue returns to homeostasis after injury. A subpopulation of cholinergic neurons triggers Ca2+ currents among enterocytes to promote return to homeostasis after injury, and disruption of this process leads to gut inflammation and hyperplasia in Drosophila.
Jensen B.A., Heyndrickx M., Jonkers D., Mackie A., Millet S., Naghibi M., Pærregaard S.I., Pot B., Saulnier D., Sina C., Sterkman L.G., Van den Abbeele P., Venlet N.V., Zoetendal E.G., Ouwehand A.C.
Cell Reports Medicine scimago Q1 wos Q1 Open Access
2023-09-07 citations by CoLab: 40 Abstract  
Research on gut microbiota has generally focused on fecal samples, representing luminal content of the large intestine. However, nutrient uptake is restricted to the small intestine. Abundant immune cell populations at this anatomical site combined with diminished mucus secretion and looser junctions (partly to allow for more efficient fluid and nutrient absorption) also results in intimate host-microbe interactions despite more rapid transit. It is thus crucial to dissect key differences in both ecology and physiology between small and large intestine to better leverage the immense potential of human gut microbiota imprinting, including probiotic engraftment at biological sensible niches. Here, we provide a detailed review unfolding how the physiological and anatomical differences between the small and large intestine affect gut microbiota composition, function, and plasticity. This information is key to understanding how gut microbiota manipulation, including probiotic administration, may strain-dependently transform host-microbe interactions at defined locations.

Top-30

Journals

1
1

Publishers

1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?