Open Access
Open access
International Journal of Molecular Sciences, volume 25, issue 7, pages 3656

Exploring the Gut–Mitochondrial Axis: p66Shc Adapter Protein and Its Implications for Metabolic Disorders

Publication typeJournal Article
Publication date2024-03-25
scimago Q1
wos Q2
SJR1.179
CiteScore8.1
Impact factor4.9
ISSN16616596, 14220067
Catalysis
Organic Chemistry
Inorganic Chemistry
Physical and Theoretical Chemistry
Computer Science Applications
Spectroscopy
Molecular Biology
General Medicine
Abstract

This review investigates the multifaceted role of the p66Shc adaptor protein and the gut microbiota in regulating mitochondrial function and oxidative stress, and their collective impact on the pathogenesis of chronic diseases. The study delves into the molecular mechanisms by which p66Shc influences cellular stress responses through Rac1 activation, Forkhead-type transcription factors inactivation, and mitochondria-mediated apoptosis, alongside modulatory effects of gut microbiota-derived metabolites and endotoxins. Employing an integrative approach, the review synthesizes findings from a broad array of studies, including molecular biology techniques and analyses of microbial metabolites’ impacts on host cellular pathways. The results underscore a complex interplay between microbial metabolites, p66Shc activation, and mitochondrial dysfunction, highlighting the significance of the gut microbiome in influencing disease outcomes through oxidative stress pathways. Conclusively, the review posits that targeting the gut microbiota-p66Shc–mitochondrial axis could offer novel therapeutic strategies for mitigating the development and progression of metabolic diseases. This underscores the potential of dietary interventions and microbiota modulation in managing oxidative stress and inflammation, pivotal factors in chronic disease etiology.

Walker A.W., Hoyles L.
Nature Microbiology scimago Q1 wos Q1
2023-07-31 citations by CoLab: 92 Abstract  
Over the past two decades, interest in human microbiome research has increased exponentially. Regrettably, this increased activity has brought with it a degree of hype and misinformation, which can undermine progress and public confidence in the research. Here we highlight selected human microbiome myths and misconceptions that lack a solid evidence base. By presenting these examples, we hope to draw increased attention to the implications of inaccurate dogma becoming embedded in the literature, and the importance of acknowledging nuance when describing the complex human microbiome. Walker and Hoyles highlight selected myths and misconceptions in the human microbiota literature.
Van Hul M., Cani P.D.
Nature Reviews Endocrinology scimago Q1 wos Q1
2023-01-17 citations by CoLab: 142 Abstract  
Obesity is caused by a long-term difference between energy intake and expenditure — an imbalance that is seemingly easily restored by increasing exercise and reducing caloric consumption. However, as simple as this solution appears, for many people, losing excess weight is difficult to achieve and even more difficult to maintain. The reason for this difficulty is that energy intake and expenditure, and by extension body weight, are regulated through complex hormonal, neural and metabolic mechanisms that are under the influence of many environmental factors and internal responses. Adding to this complexity, the microorganisms (microbes) that comprise the gut microbiota exert direct effects on the digestion, absorption and metabolism of food. Furthermore, the gut microbiota exerts a miscellany of protective, structural and metabolic effects both on the intestinal milieu and peripheral tissues, thus affecting body weight by modulating metabolism, appetite, bile acid metabolism, and the hormonal and immune systems. In this Review, we outline historical and recent advances in understanding how the gut microbiota is involved in regulating body weight homeostasis. We also discuss the opportunities, limitations and challenges of using gut microbiota-related approaches as a means to achieve and maintain a healthy body weight. This Review outlines evidence that the gut microbiota is involved in regulating body weight homeostasis. In addition, the opportunities, limitations and challenges of using gut microbiota-related approaches as a means to achieve and maintain a healthy body weight in people with overweight or obesity are discussed.
Larke J.A., Bacalzo N., Castillo J.J., Couture G., Chen Y., Xue Z., Alkan Z., Kable M.E., Lebrilla C.B., Stephensen C.B., Lemay D.G.
Journal of Nutrition scimago Q1 wos Q2
2023-01-01 citations by CoLab: 14 Abstract  
Current assessment of dietary carbohydrates does not adequately reflect the nutritional properties and effects on gut microbial structure and function. Deeper characterization of food carbohydrate composition can serve to strengthen the link between diet and gastrointestinal health outcomes. The present study aims to characterize the monosaccharide composition of diets in a healthy U.S. adult cohort and use these features to assess the relationship between monosaccharide intake, diet quality, characteristics of the gut microbiota, and gastrointestinal inflammation. This observational, cross-sectional study enrolled males and females across age (18-33 y, 34-49 y and 50-65 y) and BMI (normal, 18.5 – 24.99 kg/m2; overweight, 25 – 29.99 kg/m2; and obese, 30 – 44 kg/m2) categories. Recent dietary intake was assessed by the automated self-administered 24-hr dietary recall system (ASA24) and gut microbiota were assessed with shotgun metagenome sequencing. Dietary recalls were mapped to the Davis Food Glycopedia to estimate monosaccharide intake. Participants with >75% of carbohydrate intake mappable to the glycopedia were included (N = 180). Diversity of monosaccharide intake was positively associated with the total Healthy Eating Index (HEI) score (Pearson’s r = 0.520, p = 1.2 x 10-13) and negatively associated with fecal neopterin (Pearson’s r = -0.247, p = 3.0 x 10-3) Comparing high vs. low intake of specific monosaccharides revealed differentially abundant taxa (Wald test, p < 0.05) which was associated with the functional capacity to breakdown these monomers (Wilcoxon rank-sum test, p < 0.05). Monosaccharide intake was associated with diet quality, gut microbial diversity, microbial metabolism, and gastrointestinal inflammation in healthy adults. As specific food sources were rich in particular monosaccharides, it may be possible in the future to tailor diets to fine-tune the gut microbiota and gastrointestinal function. This trial is registered at www.clinicaltrials.gov as NCT02367287 NCT02367287; www.clinicaltrials.gov.
Mousavi S., Khazeei Tabari M.A., Bagheri A., Samieefar N., Shaterian N., Kelishadi R.
Journal of Diabetes Research scimago Q2 wos Q2 Open Access
2022-11-24 citations by CoLab: 10 Abstract  
It is well-documented that diabetes is an inflammatory and oxidative disease, with an escalating global burden. Still, there is no definite treatment for diabetes or even prevention of its harmful complications. Therefore, understanding the molecular pathways associated with diabetes might help in finding a solution. p66Shc is a member of Shc family proteins, and it is considered as an oxidative stress sensor and regulator in cells. There are inconsistent data about the role of p66Shc in inducing diabetes, but accumulating evidence supports its role in the pathogenesis of diabetes-related complications, including macro and microangiopathies. There is growing hope that by understanding and targeting molecular pathways involved in this network, prevention of diabetes or its complications would be achievable. This review provides an overview about the role of p66Shc in the development of diabetes and its complications.
Haslem L., Hays J.M., Hays F.A.
Cells scimago Q1 wos Q2 Open Access
2022-06-06 citations by CoLab: 14 PDF Abstract  
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Hou K., Wu Z., Chen X., Wang J., Zhang D., Xiao C., Zhu D., Koya J.B., Wei L., Li J., Chen Z.
2022-04-23 citations by CoLab: 1287 PDF Abstract  
The role of microbiota in health and diseases is being highlighted by numerous studies since its discovery. Depending on the localized regions, microbiota can be classified into gut, oral, respiratory, and skin microbiota. The microbial communities are in symbiosis with the host, contributing to homeostasis and regulating immune function. However, microbiota dysbiosis can lead to dysregulation of bodily functions and diseases including cardiovascular diseases (CVDs), cancers, respiratory diseases, etc. In this review, we discuss the current knowledge of how microbiota links to host health or pathogenesis. We first summarize the research of microbiota in healthy conditions, including the gut-brain axis, colonization resistance and immune modulation. Then, we highlight the pathogenesis of microbiota dysbiosis in disease development and progression, primarily associated with dysregulation of community composition, modulation of host immune response, and induction of chronic inflammation. Finally, we introduce the clinical approaches that utilize microbiota for disease treatment, such as microbiota modulation and fecal microbial transplantation.
Haslem L., Hays J.M., Schmitz H., Matsuzaki S., Sjoelund V., Byrum S.D., Humphries K.M., Frazer J.K., Demeler B., Benbrook D.M., Tierney R.M., Duggan K.D., Hays F.A.
2022-04-14 citations by CoLab: 3 Abstract  
SUMMARYp66Shc is an oxidoreductase that responds to cell stress by translocating to mitochondria, where p66Shc produces pro-apoptotic reactive oxygen species (ROS). This study identifies ROS-active p66Shc as a monomer that produces superoxide anion independent of metal ions, inhibits cytochrome c peroxidase, and is regulated by environmental condition-induced structural changes. p66Shc anti-apoptotic functions, including: cytochrome c reduction, increased electron transport chain activity, and caspase cascade inhibition were also discovered. This study also demonstrates that p66Shc is a stress-dependent rheostat of apoptosis, regulated by p66Shc-mortalin complexes. These complexes decrease pro-apoptotic ROS production, without blocking p66Shc-mediated cytochrome c reduction. However, stress disrupts p66Shc-mortalin interactions, promoting apoptosis. Tipping p66Shc’s apoptotic balance toward anti-apoptotic functions by genetic knockdown or p66Shc-selective ROS inhibition decreased pro-apoptotic effects and improved outcomes in zebrafish myocardial infarction models, representing a potential new myocardial infarction treatment with promising results.
Ikubo Y., Sanada T.J., Hosomi K., Park J., Naito A., Shoji H., Misawa T., Suda R., Sekine A., Sugiura T., Shigeta A., Nanri H., Sakao S., Tanabe N., Mizuguchi K., et. al.
BMC Pulmonary Medicine scimago Q2 wos Q2 Open Access
2022-04-08 citations by CoLab: 14 PDF Abstract  
The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) is considered to be associated with chronic inflammation; however, the underlying mechanism remains unclear. Recently, altered gut microbiota were found in patients with pulmonary arterial hypertension (PAH) and in experimental PAH models. The aim of this study was to characterize the gut microbiota in patients with CTEPH and assess the relationship between gut dysbiosis and inflammation in CTEPH. In this observational study, fecal samples were collected from 11 patients with CTEPH and 22 healthy participants. The abundance of gut microbiota in these fecal samples was assessed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing. Inflammatory cytokine and endotoxin levels were also assessed in patients with CTEPH and control participants. The levels of serum tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and macrophage inflammatory protein (MIP)-1α were elevated in patients with CTEPH. Plasma endotoxin levels were significantly increased in patients with CTEPH (P < 0.001), and were positively correlated with TNF-α, IL-6, IL-8, and MIP-1α levels. The 16S rRNA gene sequencing and the principal coordinate analysis revealed the distinction in the gut microbiota between patients with CTEPH (P < 0.01) and control participants as well as the decreased bacterial alpha-diversity in patients with CTEPH. A random forest analysis for predicting the distinction in gut microbiota revealed an accuracy of 80.3%. The composition of the gut microbiota in patients with CTEPH was distinct from that of healthy participants, which may be associated with the elevated inflammatory cytokines and endotoxins in CTEPH.
Uchiyama J., Akiyama M., Hase K., Kumagai Y., Kim Y.
Cell Reports scimago Q1 wos Q1 Open Access
2022-03-08 citations by CoLab: 63 Abstract  
SummaryGut microbiota act beyond the gastrointestinal tract to regulate the physiology of the host. However, their contribution to the antioxidant capacity of the host remains largely understudied. In this study, we observe that gut bacteria increase the steady-state plasma levels of high-antioxidant molecules, reactive sulfur species (RSS), such as hydrogen sulfide and cysteine persulfide (CysSSH), in the host. Moreover, gut bacteria utilize cystine as a substrate to enzymatically produce CysSSH. Administration of cystine to mice increases their plasma levels of RSS and suppresses the concanavalin-A-induced oxidative stress and liver damage in a gut-microbiota-dependent manner. We find that gut bacteria belonging to the Lachnospiraceae and Ruminococcaceae families have a high capacity to produce RSS, requiring pyridoxal 5′-phosphate for their enzymatic reactions. Collectively, our data demonstrate that gut microbiota enhance the antioxidant capacity of the host through the generation of RSS.
Walker R.L., Vlamakis H., Lee J.W., Besse L.A., Xanthakis V., Vasan R.S., Shaw S.Y., Xavier R.J.
Genome Medicine scimago Q1 wos Q1 Open Access
2021-12-17 citations by CoLab: 43 PDF Abstract  
The human gut harbors trillions of microbes that play dynamic roles in health. While the microbiome contributes to many cardiometabolic traits by modulating host inflammation and metabolism, there is an incomplete understanding regarding the extent that and mechanisms by which individual microbes impact risk and development of cardiovascular disease (CVD). The Framingham Heart Study (FHS) is a multi-generational observational study following participants over decades to identify risk factors for CVD by correlating genetic and phenotypic factors with clinical outcomes. As a large-scale population-based cohort with extensive clinical phenotyping, FHS provides a rich landscape to explore the relationships between the gut microbiome and cardiometabolic traits. We performed 16S rRNA gene sequencing on stool from 1423 participants of the FHS Generation 3, OMNI2, and New Offspring Spouse cohorts. Data processing and taxonomic assignment were performed with the 16S bioBakery workflow using the UPARSE pipeline. We conducted statistical analyses to investigate trends in overall microbiome composition and diversity in relation to disease states and systematically examined taxonomic associations with a variety of clinical traits, disease phenotypes, clinical blood markers, and medications. We demonstrate that overall microbial diversity decreases with increasing 10-year CVD risk and body mass index measures. We link lifestyle factors, especially diet and exercise, to microbial diversity. Our association analyses reveal both known and unreported microbial associations with CVD and diabetes, related prescription medications, as well as many anthropometric and blood test measurements. In particular, we observe a set of microbial species that demonstrate significant associations with CVD risk, metabolic syndrome, and type 2 diabetes as well as a number of shared associations between microbial species and cardiometabolic subphenotypes. The identification of significant microbial taxa associated with prevalent CVD and diabetes, as well as risk for developing CVD, adds to increasing evidence that the microbiome may contribute to CVD pathogenesis. Our findings support new hypothesis generation around shared microbe-mediated mechanisms that influence metabolic syndrome, diabetes, and CVD risk. Further investigation of the gut microbiomes of CVD patients in a targeted manner may elucidate microbial mechanisms with diagnostic and therapeutic implications.
Hughes W.E., Hockenberry J., Miller B., Sorokin A., Beyer A.M.
2021-12-01 citations by CoLab: 6 Abstract  
We demonstrate that the modulation of p66Shc signaling impairs cerebral artery myogenic tone in a low renin model of hypertension. This impairment is dependent upon the genetic background, as modulated p66Shc signaling in Sprague-Dawley rats does not impair cerebral artery myogenic tone.
Anhê F.F., Barra N.G., Cavallari J.F., Henriksbo B.D., Schertzer J.D.
Cell Reports scimago Q1 wos Q1 Open Access
2021-09-14 citations by CoLab: 95 Abstract  
Lipopolysaccharides (LPSs) can promote metabolic endotoxemia, which is considered inflammatory and metabolically detrimental based on Toll-like receptor (TLR)4 agonists, such as Escherichia coli-derived LPS. LPSs from certain bacteria antagonize TLR4 yet contribute to endotoxemia measured by endotoxin units (EUs). We found that E. coli LPS impairs gut barrier function and worsens glycemic control in mice, but equal doses of LPSs from other bacteria do not. Matching the LPS dose from R. sphaeroides and E. coli by EUs reveals that only E. coli LPS promotes dysglycemia and adipose inflammation, delays intestinal glucose absorption, and augments insulin and glucagon-like peptide (GLP)-1 secretion. Metabolically beneficial endotoxemia promoted by R. sphaeroides LPS counteracts dysglycemia caused by an equal dose of E. coli LPS and improves glucose control in obese mice. The concept of metabolic endotoxemia should be expanded beyond LPS load to include LPS characteristics, such as lipid A acylation, which dictates the effect of metabolic endotoxemia.
Rohm T.V., Fuchs R., Müller R.L., Keller L., Baumann Z., Bosch A.J., Schneider R., Labes D., Langer I., Pilz J.B., Niess J.H., Delko T., Hruz P., Cavelti-Weder C.
Frontiers in Immunology scimago Q1 wos Q1 Open Access
2021-05-12 citations by CoLab: 42 PDF Abstract  
Chronic low-grade inflammation is a hallmark of obesity and associated with cardiovascular complications. However, it remains unclear where this inflammation starts. As the gut is constantly exposed to food, gut microbiota, and metabolites, we hypothesized that mucosal immunity triggers an innate inflammatory response in obesity. We characterized five distinct macrophage subpopulations (P1-P5) along the gastrointestinal tract and blood monocyte subpopulations (classical, non-classical, intermediate), which replenish intestinal macrophages, in non-obese (BMI&lt;27kg/m2) and obese individuals (BMI&gt;32kg/m2). To elucidate factors that potentially trigger gut inflammation, we correlated these subpopulations with cardiovascular risk factors and lifestyle behaviors. In obese individuals, we found higher pro-inflammatory macrophages in the stomach, duodenum, and colon. Intermediate blood monocytes were also increased in obesity, suggesting enhanced recruitment to the gut. We identified unhealthy lifestyle habits as potential triggers of gut and systemic inflammation (i.e., low vegetable intake, high processed meat consumption, sedentary lifestyle). Cardiovascular risk factors other than body weight did not affect the innate immune response. Thus, obesity in humans is characterized by gut inflammation as shown by accumulation of pro-inflammatory intestinal macrophages, potentially via recruited blood monocytes. Understanding gut innate immunity in human obesity might open up new targets for immune-modulatory treatments in metabolic disease.
Zhunina O.A., Yabbarov N.G., Grechko A.V., Starodubova A.V., Ivanova E., Nikiforov N.G., Orekhov A.N.
2021-05-07 citations by CoLab: 45 PDF Abstract  
Mitochondrial dysfunction is known to be associated with a wide range of human pathologies, such as cancer, metabolic, and cardiovascular diseases. One of the possible ways of mitochondrial involvement in the cellular damage is excessive production of reactive oxygen and nitrogen species (ROS and RNS) that cannot be effectively neutralized by existing antioxidant systems. In mitochondria, ROS and RNS can contribute to protein and mitochondrial DNA (mtDNA) damage causing failure of enzymatic chains and mutations that can impair mitochondrial function. These processes further lead to abnormal cell signaling, premature cell senescence, initiation of inflammation, and apoptosis. Recent studies have identified numerous mtDNA mutations associated with different human pathologies. Some of them result in imbalanced oxidative phosphorylation, while others affect mitochondrial protein synthesis. In this review, we discuss the role of mtDNA mutations in cancer, diabetes, cardiovascular diseases, and atherosclerosis. We provide a list of currently described mtDNA mutations associated with each pathology and discuss the possible future perspective of the research.
Chen Y., Zhou J., Wang L.
2021-03-17 citations by CoLab: 343 PDF Abstract  
The human gut microbiome is a huge microbial community that plays an irreplaceable role in human life. With the further development of research, the influence of intestinal flora on human diseases has been gradually excavated. Gut microbiota (GM) dysbiosis has adverse health effects on the human body that will lead to a variety of chronic diseases. The underlying mechanisms of GM on human diseases are incredibly complicated. This review focuses on the regulation and mechanism of GM on neurodegenerative diseases, cardiovascular diseases, metabolic diseases and gastrointestinal diseases, thus providing a potential target for the prevention and treatment of disease.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?