Developmental Pharmacology and Therapeutics

S. Karger AG
S. Karger AG
ISSN: 03798305, 25042505

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
journal names
Developmental Pharmacology and Therapeutics
Publications
812
Citations
7 922
h-index
35
Top-3 citing journals
Clinics in Perinatology
Clinics in Perinatology (121 citations)
Journal of Pediatrics
Journal of Pediatrics (119 citations)
Pediatric Research
Pediatric Research (101 citations)
Top-3 organizations
Columbia University
Columbia University (12 publications)
University of Pisa
University of Pisa (12 publications)
Top-3 countries
USA (145 publications)
Canada (30 publications)
France (25 publications)

Most cited in 5 years

Found 
from chars
Publications found: 6863
Acousto-dewetting enables droplet microfluidics on superhydrophilic surfaces
Liu S., Sun P., Wang M., Jiang Y., Li J., Jia Y., Sun Z., Yang Y., Liu H., Lu H., Wang Z.
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 0
Enzymes as viscoelastic catalytic machines
Weinreb E., McBride J.M., Siek M., Rougemont J., Renault R., Peleg Y., Unger T., Albeck S., Fridmann-Sirkis Y., Lushchekina S., Sussman J.L., Grzybowski B.A., Zocchi G., Eckmann J., Moses E., et. al.
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 1
The mechanics of protein sweet spots
Tang Q.
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 0
Optical control of an excitable enzyme circuit for engineering dynamic cell shapes
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 0
Twist angle serves as a tuning knob for superconductivity
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 0
A qudit quantum computer for simulation of two-dimensional quantum electrodynamics
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 0
Quantifying second-messenger information transmission in bacteria
Xiong J., Wang L., Lin J., Ni L., Zhang R., Yang S., Huang Y., Chu J., Jin F.
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 0
Quantum statistics in the minimal Bell scenario
Barizien V., Bancal J.
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 1
The limits of quantum correlations
Le T.P.
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 0
Simulating two-dimensional lattice gauge theories on a qudit quantum computer
Meth M., Zhang J., Haase J.F., Edmunds C., Postler L., Jena A.J., Steiner A., Dellantonio L., Blatt R., Zoller P., Monz T., Schindler P., Muschik C., Ringbauer M.
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 1
Light-induced cortical excitability reveals programmable shape dynamics in starfish oocytes
Liu J., Burkart T., Ziepke A., Reinhard J., Chao Y., Tan T.H., Swartz S.Z., Frey E., Fakhri N.
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 0
Active membrane deformations of a minimal synthetic cell
Sciortino A., Faizi H.A., Fedosov D.A., Frechette L., Vlahovska P.M., Gompper G., Bausch A.R.
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 0  |  Abstract
Abstract Living cells can adapt their shape in response to their environment, a process driven by the interaction between their flexible membrane and the activity of the underlying cytoskeleton. However, the precise physical mechanisms of this coupling remain unclear. Here we show how cytoskeletal forces acting on a biomimetic membrane affect its deformations. Using a minimal cell model that consists of an active network of microtubules and molecular motors encapsulated inside lipid vesicles, we observe large shape fluctuations and travelling membrane deformations. Quantitative analysis of membrane and microtubule dynamics demonstrates how active forces set the temporal scale of vesicle fluctuations, giving rise to fluctuation spectra that differ in both their spatial and temporal decays from their counterparts in thermal equilibrium. Using simulations, we extend the classical framework of membrane fluctuations to active cytoskeleton-driven vesicles, demonstrating how correlated activity governs membrane dynamics and the roles of confinement, membrane material properties and cytoskeletal forces. Our findings provide a quantitative foundation for understanding the shape-morphing abilities of living cells.
Deterministic remote entanglement using a chiral quantum interconnect
Almanakly A., Yankelevich B., Hays M., Kannan B., Assouly R., Greene A., Gingras M., Niedzielski B.M., Stickler H., Schwartz M.E., Serniak K., Wang J.Î., Orlando T.P., Gustavsson S., Grover J.A., et. al.
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 0
Interplay between topology and correlations in the second moiré band of twisted bilayer MoTe2
Xu F., Chang X., Xiao J., Zhang Y., Liu F., Sun Z., Mao N., Peshcherenko N., Li J., Watanabe K., Taniguchi T., Tong B., Lu L., Jia J., Qian D., et. al.
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 1
Twisted path to Landau levels
Yasuda K.
Q1
Springer Nature
Nature Physics 2025 citations by CoLab: 0

Top-100

Citing journals

20
40
60
80
100
120
140
Show all (70 more)
20
40
60
80
100
120
140

Citing publishers

500
1000
1500
2000
2500
3000
Show all (70 more)
500
1000
1500
2000
2500
3000

Publishing organizations

2
4
6
8
10
12
14
16
18
Show all (70 more)
2
4
6
8
10
12
14
16
18

Publishing countries

20
40
60
80
100
120
140
160
USA, 145, 17.86%
Canada, 30, 3.69%
France, 25, 3.08%
Italy, 24, 2.96%
Germany, 22, 2.71%
Sweden, 11, 1.35%
Japan, 8, 0.99%
United Kingdom, 7, 0.86%
Israel, 5, 0.62%
Netherlands, 5, 0.62%
Switzerland, 4, 0.49%
China, 3, 0.37%
Belgium, 3, 0.37%
India, 3, 0.37%
Spain, 3, 0.37%
Finland, 3, 0.37%
Mexico, 2, 0.25%
Norway, 2, 0.25%
Australia, 1, 0.12%
Hungary, 1, 0.12%
Greece, 1, 0.12%
Denmark, 1, 0.12%
Ireland, 1, 0.12%
Kuwait, 1, 0.12%
New Zealand, 1, 0.12%
Czech Republic, 1, 0.12%
Czechoslovakia, 1, 0.12%
20
40
60
80
100
120
140
160