4 April 2023, 20:00 Виталина Власова

Нейросеть точно предсказала прочность сплавов всего по двум параметрам

Физики разработали методику, которая с помощью искусственной нейросети оценивает прочность различных металлических сплавов с точностью до 98%. Предложенный подход позволит ускорить и упростить определение материалов, оптимальных по своим механическим характеристикам для использования в различных областях, в том числе в медицине и электротехнике. 

Большинство металлических сплавов имеют кристаллическую структуру: атомы в них расположены упорядоченно, на равных расстояниях друг от друга, создавая конструкцию, напоминающую трехмерную сеть. Однако если в процессе производства расплав — изначально жидкое состояние сплава — очень быстро охлаждают, нормальная кристаллическая решетка не успевает сформироваться, и остывший материал приобретает аморфную, то есть неупорядоченную структуру. Аморфные сплавы более прочные, легкие и устойчивые к разрушению в сравнении с кристаллическими. В связи с этим их широко используют при создании деталей машин, медицинского оборудования и спортивного инвентаря.

Прочность аморфных сплавов оценивают по их способности сохранять свою структуру при сжатии и растяжении. Чтобы описать, насколько материал устойчив к таким воздействиям, физики используют специальную величину — модуль Юнга, который определяют экспериментально, сдавливая или растягивая образец из интересующего сплава. Однако до сих пор оставалось неизученным, от каких физических и химических характеристик материала зависит эта величина.

Ученые кафедры вычислительной физики Казанского федерального университета (Казань) создали нейросеть, способную выявлять зависимость между различными физическими и химическими характеристиками и оценивать значение модуля Юнга. Для обучения алгоритма авторы использовали данные о более чем 300 различных сплавах, содержащих алюминий, медь, железо и другие металлы.

Нейросеть определила, что на модуль Юнга в основном влияют два показателя: предел текучести и температура стеклования материала. Первая величина отображает, при какой физической нагрузке сплав начинает деформироваться, а вторая обозначает температуру, при охлаждении до которой жидкий расплав застывает, превращаясь в соответствующий твердый аморфный сплав. Так, используя всего два этих параметра, нейросеть определила модуль Юнга для различных соединений с точностью до 98% в сравнении с экспериментально полученными значениями.

В то же время оказалось, что химические свойства сплава, такие как количество и молекулярная масса входящих в его состав элементов, не влияют на устойчивость к растяжению и сжатию. На это указывает то, что по данным характеристикам алгоритм рассчитывал модуль Юнга с ошибкой примерно в 50%.

«Предложенная нами модель с точностью до 98% позволяет рассчитать устойчивость самых различных сплавов к сжатию и растяжению всего по двум физическим характеристикам, одна из которых — температура стеклования. Это само по себе является неожиданным, поскольку указывает на существование ранее неизвестного соотношения между прочностными характеристиками и термодинамическими параметрами. Эти результаты мы планируем использовать для оценки прочностных свойств металлических сплавов, которые могут быть синтезированы в будущем», — рассказывает участник проекта, поддержанного грантом РНФ, Булат Галимзянов, кандидат физико-математических наук, доцент кафедры вычислительной физики и моделирования физических процессов КФУ.

Source:  Пресс-служба РНФ

News article profiles

News article publications

Read also

Сплав никеля, марганца, олова и меди сделает холодильники экологичнее
Ученые выяснили, что сплав никеля, марганца, олова и небольшого количества меди под действием магнитных полей (при разовом включении/выключении магнитного поля) практически необратимо охлаждается на 13°С. Авторы предложили использовать эту особенность в гибридных системах охлаждения бытовых приборов, например холодильников. Такие системы комбинируют различные методы охлаждения для достижения более эффективной и экологически устойчивой работы.
Materials Science
Mechanics of materials
Metals and their alloys
2 February 2024
Высокоэнергичные ионы превратили графен в наноалмазы
Ученые получили стабильный материал, состоящий из графена и наноалмазов, облучив многослойный графен быстрыми тяжелыми ионами. Возможность управлять механическими свойствами нового наноструктурированного материала в сочетании с легкостью и гибкостью графена открывает перспективы для его использования в космической авиации, автомобильной промышленности и медицинских устройствах.
Materials Science
Mechanics of materials
Mechanochemistry
17 March 2024
Тугоплавкие сплавы позволят выдерживать температуры до 1000°С
Ученые доказали, что жаростойкость и прочность тугоплавких сплавов не зависят от количества входящих в их состав компонентов, как считалось ранее. Самую высокую жаростойкость при 1000°С показал сплав из трех металлов, а именно ниобия, титана и хрома, тогда как лучшую прочность продемонстрировал сплав из ниобия и хрома. Это открытие позволит разрабатывать перспективные сплавы для производства двигателей нового поколения, не требующих систем охлаждения.
High temperature materials
Materials Science
Metals and their alloys
15 March 2024
Квазистабильные цепочки атомов сделали жидкий висмут более структурированным
Понимание физики промышленно важных расплавов, таких как расплав висмута, позволит создавать материалы с улучшенными свойствами, например прочностью
Materials Science
Metals and their alloys
27 July 2023
Танталовое покрытие увеличит срок службы и приживаемость имплантов из титана
Пористое покрытие напечатали с помощью электроискровых разрядов, а затем запекли, чтобы сделать его прочнее и «залечить» трещины. Равномерность нанесения удалось обеспечить за счет автоматизации процесса
Engineering
Management
Materials Science
Metals and their alloys
20 July 2023
Особая подготовка позволила «настроить» свойства сплавов даже после закалки
Подход можно использовать для производства высокопрочных сплавов с сохранением аморфного эффекта, когда материал обладает твердостью, но при этом лишен кристаллической решетки
Mechanics of materials
Metals and their alloys
New techniques
3 July 2023