20 July 2023, 23:00

Танталовое покрытие увеличит срок службы и приживаемость имплантов из титана

Российские ученые применили компьютерное управление, чтобы с помощью электроискровых разрядов «напечатать» на поверхности титана равномерное пористое покрытие из тантала. Последующая высокотемпературная обработка сделала танталовое покрытие прочнее и увеличила его твердость в 2–5 раз по сравнению с распространенными аналогами из оксида и нитрида титана. Полученное сверхтвердое покрытие продлит срок службы титановых имплантов, применяемых в стоматологии и хирургии, и улучшит их срастание с костями.

Танталовое покрытие увеличит срок службы и приживаемость имплантов из титана
Титановое изделие (a) с танталовым покрытием (b) и участком без покрытия (c), а также танталовое покрытие после индукционной термообработки при различной температуре (d–f)

Титан применяют в стоматологии и хирургии уже более 50 лет благодаря его высокой прочности, легкости и устойчивости к коррозии. Из него делают зубные импланты, суставы, фрагменты костей, а также соединительные элементы для их сращивания. Этот металл обладает хорошей биосовместимостью — в большинстве случаев организм его не отторгает, однако иногда примеси (ванадий, железо, алюминий), содержащиеся в титановых сплавах, могут провоцировать аллергию. Избежать таких реакций помогает формирование на титане твердого пористого покрытия из керамики или других биосовместимых металлов и их соединений (оксидов, нитридов и других). Еще одно преимущество пористого покрытия состоит в том, что костная ткань срастается с ним быстрее, чем с гладким материалом, что ускоряет приживление импланта. Перспективным материалом для такой обработки является тугоплавкий, но пластичный металл тантал. Под действием высокой температуры на нем образуется тонкий оксидный слой, устойчивый к коррозии, гипоаллергенный и нейтральный по отношению к организму человека. Также благодаря контролируемой термической обработке тантал становится твердым и приобретает наноразмерную поверхностную структуру. Это позволяет имплантируемой конструкции хорошо переносить интенсивные механические нагрузки, которым подвергаются кости.

Ученые Саратовского государственного технического университета имени Гагарина Ю.А. (Саратов) в 2018 году предложили совместить высокотемпературную обработку танталового покрытия с методом электроискрового легирования — нанесения тантала на титан с помощью устройства, генерирующего электрические искры между электродом и изделием. Рабочая часть танталового электрода оплавлялась и в виде микрокапель переносилась на поверхность титана, благодаря чему металлы «сваривались». Последующая термическая обработка приводила к образованию на покрытии оксида тантала, который упрочнил титан-танталовый слой и заполнил трещины, появившиеся из-за быстрого остывания танталовых капель. Такой метод позволил получить упругое высокопористое покрытие. Однако его недостатком оказалась неравномерная толщина от 2–3 до 20–30 микрон, которая мешала покрытию выполнять роль своеобразного буфера между костью и титаном, защищая имплант от повреждений. Наличие тонких участков объяснялось тем, что процесс нанесения микрочастиц тантала было сложно контролировать.

В новом исследовании ученые автоматизировали процесс электроискрового напыления тантала с помощью числового программного управления. Разработанный авторами комплекс и управляющие программы позволили «вырастить» танталовые пленки с равномерной толщиной около 50–70 микрон. Последующий индукционный нагрев конструкции до 950–970°С сформировал на поверхности покрытия многокомпонентную оксидную структуру, вызвав эффект «самозалечивания» трещин. Комбинация методов позволила достичь сверхтвердости пористого материала — 60–80 гигапаскалей, что в 2–5 раз превышает показатели биосовместимых покрытий, нанесенных иными способами, а также сделанных из других материалов, таких как оксид и нитрид титана. Предложенная технология поможет улучшить характеристики и продлить срок службы титановых имплантов.

«Мы планируем и дальше развивать метод управляемого "‎выращивания" титан-танталовых пористых структур и покрытий с помощью электроискровой обработки. Это позволит увеличить толщину слоя, а также адаптировать технологию для создания объемных конструкций или нанесения локальных покрытий на металлические изделия сложной формы, таких как накостные пластины или штифты с резьбой. Кроме того, метод можно применить к другим тугоплавким металлам и использовать, например, для создания сверхпрочных инструментов», — рассказывает руководитель проекта, поддержанного грантом РНФ, Александр Фомин, доктор технических наук, заведующий кафедрой «Материаловедение и биомедицинская инженерия» СГТУ имени Гагарина Ю. А.

Source:  Пресс-служба РНФ

News article publications

Found 
Share

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.

Read also

Тугоплавкие сплавы позволят выдерживать температуры до 1000°С
Ученые доказали, что жаростойкость и прочность тугоплавких сплавов не зависят от количества входящих в их состав компонентов, как считалось ранее. Самую высокую жаростойкость при 1000°С показал сплав из трех металлов, а именно ниобия, титана и хрома, тогда как лучшую прочность продемонстрировал сплав из ниобия и хрома. Это открытие позволит разрабатывать перспективные сплавы для производства двигателей нового поколения, не требующих систем охлаждения.
High temperature materials
Materials Science
Metals and their alloys
15 March 2024
Сплав никеля, марганца, олова и меди сделает холодильники экологичнее
Ученые выяснили, что сплав никеля, марганца, олова и небольшого количества меди под действием магнитных полей (при разовом включении/выключении магнитного поля) практически необратимо охлаждается на 13°С. Авторы предложили использовать эту особенность в гибридных системах охлаждения бытовых приборов, например холодильников. Такие системы комбинируют различные методы охлаждения для достижения более эффективной и экологически устойчивой работы.
Materials Science
Mechanics of materials
Metals and their alloys
2 February 2024
Квазистабильные цепочки атомов сделали жидкий висмут более структурированным
Понимание физики промышленно важных расплавов, таких как расплав висмута, позволит создавать материалы с улучшенными свойствами, например прочностью
Materials Science
Metals and their alloys
27 July 2023
Получен самый пластичный тугоплавкий сплав для космоса и авиации
И все благодаря мелкозернистой структуре — получить ее оказалось относительно просто
High temperature materials
Materials Science
Metals and their alloys
13 June 2023
Нейросеть точно предсказала прочность сплавов всего по двум параметрам
Она определила, что на модуль Юнга в основном влияют два показателя: предел текучести и температура стеклования. Точность предсказания на их основе составила 98% в сравнении с экспериментально полученными значениями
Artificial intelligence
Materials Science
Mechanics of materials
Metals and their alloys
4 April 2023
Новый подход, позволяющий создавать светоизлучающие материалы на основе палладия
Химики разработали подход, позволяющий создавать новые светоизлучающие материалы на основе органических соединений палладия. Открытие в перспективе может стать основой для светодиодов нового поколения, которые будут использованы при создании дисплеев в смартфонах, мониторов, а также приборов ночного видения.
Metals and their alloys
Organic Chemistry
Organometallic chemistry
25 March 2024