26 октября 2023, 12:00

Новый метод получения сверхпроводниковых пленок NbTiN с оптимальными параметрами

Сверхпроводимость
Электроника
Электродинамика

Основное преимущество сверхпроводниковых электронных устройств — в низком уровне «паразитных» собственных шумов. Малошумящие устройства можно использовать для изучения квантовых свойств частиц, обработки излучения от далеких объектов Вселенной или для исследования состава веществ. Популярные сверхпроводники — пленки из ниобия. Основным минусом таких пленок является тот факт, что их «максимальная» рабочая частота составляет 700 Гигагерц — она ограничена щелевой частотой ниобия. Если электрический сигнал, проходящий по сверхпроводнику, обладает большей частотой, куперовские пары — связанные электроны, ответственные за свойство сверхпроводимости — разрываются, что приводит к существенному (на два-три порядка) увеличению сопротивления пленок. Для наблюдения за туманностями и звездами или для мониторинга состава атмосферы по колебательным и вращательным спектрам молекул часто нужно уметь работать на  частотах выше 1 ТГц, что почти в полтора раза больше, чем максимальная частота для ниобиевых пленок. Поэтому актуален поиск новых перспективных сверхпроводящих материалов и технологий их оптимального производства.

В Институте радиотехники и электроники им. В. А. Котельникова РАН методом магнетронного напыления исследователи изготовили пленки нитрида ниобия титана (NbTiN). Там же измерили их проводимость и критическую температуру при постоянном токе. Ученые МФТИ с помощью терагерцового спектрометра определили основные параметры этих пленок: температуру перехода в сверхпроводящее состояние, величину энергетической щели, глубину проникновения магнитного поля и проводимость. 

Ранее японские коллеги проводили схожее исследование пленок нитрида ниобия и нитрида ниобия титана. Однако они работали с  пленками существенно тоньше, чем необходимо для изготовления электродов сверхпроводниковых линий передачи сигнала в приемных устройствах ТГц-диапазона. Так как по мере увеличения толщины меняется структура пленок, то параметры образцов из одного материала, но с разными толщинами будут заметно отличаться. Важно отметить, что на практике толщина электродов выбирается больше, чем глубина проникновения магнитного поля; в противном случае потери в линии оказываются достаточно велики. Российские ученые изготовили и изучили сверхпроводящие пленки, максимально приближенные по всем параметрам к электродам сверхпроводниковых линий в реальных устройствах.

«Мы хотели определить оптимальные условия изготовления пленок, для этого меняли концентрацию азота в камере магнетрона. Эта концентрация определяет состав пленки и скорость ее роста, что отражается на свойствах. Мы нашли оптимальное значение, которое позволило, с одной стороны, получить пленку с достаточно небольшой глубиной проникновения магнитного поля, с другой стороны — достаточно высокую критическую температуру и проводимость», — говорит Федор Хан, научный сотрудник ИРЭ имени В. А. Котельникова.

Также исследователи применили различные модели для количественного описания свойств сверхпроводниковых пленок на терагерцовых частотах: стандартную модель Маттиса — Бардина, расширенную модель Циммермана (которая учитывает конечное время свободного пробега электронов, неизбежно присутствующих в сверхпроводниках при ненулевой температуре). Кроме того, ученые рассмотрели модель, учитывающую влияние магнитных примесей и структурных неоднородностей в пленках, из-за которых может происходить распад куперовских пар. Выяснилось, что уже модели Циммермана оказывается достаточно для неплохого количественного описания.

«Имеющееся в распоряжении лаборатории терагерцовой спектроскопии МФТИ спектроскопическое оборудование позволяет проводить детальное исследование особенностей сверхпроводящего состояния в тонких сверхпроводящих пленках, а также характеризовать на количественном уровне их основные электродинамические параметры на терагерцовых частотах. Последнее особенно важно для разработки приборов и устройств сверхпроводящей электроники следующих поколений», — отмечает Елена Жукова, ведущий научный сотрудник лаборатории терагерцовой спектроскопии МФТИ.

Благодаря полученным результатам другие научные группы смогут воспроизводить пленки с оптимальными параметрами. Это ускорит разработку устройств сверхпроводниковой электроники.

Статья опубликована в журнале IEEE Transactions on Terahertz Science and Technology. Работа выполнена при поддержке Российского научного фонда (проект № 23-79-00019).

Источник:  Пресс-служба МФТИ

Профили учёных из новости

Лаборатории из новости

Публикации из новости

Читайте также

Физики описали механизм взаимодействия сверхпроводимости и магнетизма
Обычно эти два явления антагонистичны и ухудшают характеристики друг друга, однако авторы смогли наблюдать их взаимоусиление
Магнетизм
Материаловедение
Сверхпроводимость
Электроника
17 апреля 2023
Разработана технология для проверки молочной продукции на антибиотики
Ученые ИТМО разработали технологию, которая автоматически определяет содержание и точную концентрацию антибиотиков в молоке. В ее основе — электрохимический анализ (высокочувствительный метод обнаружения нужных веществ в растворах) и алгоритмы машинного обучения. Разработка может уберечь потребителей молочной продукции от вредных для здоровья препаратов.  Она может использоваться и для анализа других сред — например, для обнаружения нежелательных примесей в нефти, проверки качества кофе и подлинности вина.
Машинное обучение
Электроника
Электрохимия
8 декабря 2023
Устройство из двух лазеров измерит теплопроводность материалов для электроники
Физики разработали методику на основе красного и зеленого лазеров, позволяющую быстро и бесконтактно измерять теплопроводность материалов. Эта характеристика важна, поскольку перегрев электронных компонентов таких устройств как лазеры и детекторы может вывести их из строя. Прибор на основе новой методики по точности не уступает аналогам, но при этом проще и в десять раз дешевле в изготовлении, а также работает при комнатной температуре. Используя его показания, авторы изготовили датчик терагерцового излучения, который также дешев в производстве и не требует охлаждения, а потому может использоваться в медицинской диагностике и в устройствах для просвечивания багажа.
Лазерная физика
Теплофизика
Электроника
12 ноября 2023
Объяснено ступенчатое распространение молний
Ученые выяснили, что наличие локализованных зон повышенной напряженности электрического поля при развитии отрицательных лидеров (каналов) молний обеспечивает их ступенчатое распространение. В случае положительных лидеров таких областей практически нет, поэтому молнии в основном развиваются непрерывно. Понимание того, как распространяются молнии, поможет улучшить методы защиты от них.
Физика плазмы
Электродинамика
Электрофизика
25 октября 2023
Электродинамическая ловушка помогла охарактеризовать четыре свойства частиц
Новый недорогой подход объединил в себе сразу несколько проверенных методик и показал свою эффективность: погрешность определения массы составила примерно 10%, размера и заряда — 16%, а плотности — 18%
Материаловедение
Нанотехнологии
Новые методики
Электродинамика
17 июля 2023
Квантовую запутанность предложили генерировать в сверхпроводнике
Описанный эффект интересен для фундаментальной науки, поскольку позволяет управлять квантовыми состояниями заряженных частиц с помощью небольших вариаций магнитного поля
Квантовая физика
Материаловедение
Сверхпроводимость
5 июля 2023