Физики описали механизм взаимодействия сверхпроводимости и магнетизма
Коллектив ученых МФТИ, НИТУ МИСИС и ВНИИА им. Н. Л. Духова с коллегами разобрался в механизме взаимодействия сверхпроводимости и магнетизма при высоких частотах. Исследование провели на тонкопленочных гетероструктурах, выращенных на кристалле кремния. Это открытие может найти применение в криогенной СВЧ-электронике. Работа реализована при поддержке Российского научного фонда.
Магноника, которая в будущем может стать альтернативой привычной кремниевой волновой электронике, изучает возможность передачи и обработки информации с помощью спиновых волн в магнитоупорядоченных веществах: ферромагнетиках, антиферромагнетиках и ферримагнетиках. В магнонике главную роль играют спиновые волны, или магноны, — гармонические колебания ориентации магнитного момента. В ферромагнетике магнитные моменты электронов, то есть их спины, упорядочены, а возникающие в этом упорядочении волны называются «спиновыми волнами».
У спиновых волн, возникающих в магнитоупорядоченных веществах, есть ряд преимуществ по сравнению с электромагнитными волнами, которые также используются в электронике. Спиновые волны могут управляться внешним магнитным полем, при этом длина электромагнитной волны сверхвысокочастотного диапазона (СВЧ-волны) — порядка сантиметра, тогда как для спиновых волн того же СВЧ-диапазона она составит микрометры. Поэтому на основе спиновых волн можно сделать очень компактные и перестраиваемые микроустройства для работы с СВЧ-сигналами.
Ученые МФТИ совместно с коллегами из Университета МИСИС и ВНИИА разобрались в магнитодинамических явлениях тонкопленочных структур «сверхпроводник — ферромагнетик — сверхпроводник». Ранее исследователи обнаружили, что при наличии сверхпроводящих слоев на обеих границах раздела «сверхпроводник — ферромагнетик» возникает массивный сдвиг ферромагнитного резонанса в сторону высоких частот. До сих пор было неизвестно, с чем это связано.
«Среди магнитных материалов не существует таких, у которых в нулевом поле резонансная частота оставалась бы крайне высокой — 10–15 ГГц. Но у исследованного материала такой эффект наблюдался. Оказалось, что динамика магнитного момента на интерфейсах “сверхпроводник — ферромагнетик” начинает “цепляться” за сверхпроводящие токи, так что эти токи начинают макроскопически циркулировать. Такое простое явление и приводит к тому, что радикально меняются частоты резонанса. Интереса явлению добавляет тот факт, что сверхпроводимость и магнетизм являются антагонистами: они обычно не любят взаимодействовать, то есть ухудшают свойства друг друга, а в исследованных образцах свойства наоборот улучшились», — рассказал Игорь Головчанский, первый автор исследования, ведущий научный сотрудник Центра перспективных методов мезофизики и нанотехнологий МФТИ и заведующий лабораторией криоэлектронных систем НИТУ МИСИС.
Физики сделали множество образцов с разными толщинами и свойствами и провели комплекс исследований в широком диапазоне температур и магнитных полей, накопив большой объем данных. Образцы, производимые с помощью тонкопленочных технологий, представляли собой планарные микроструктуры ферромагнитного пермаллоя (Py) помещенные между тонкими пленками ниобия (Nb). На подложку с помощью технологии магнитронного напыления наносились тонкие слои толщиной порядка десятка нанометров. После этого при помощи литографии образцы структурировались: происходили засветка шаблона и плазмохимическое травление пленок через специальную маску. В конце полученные структуры изучали в криостате замкнутого цикла с помощью СВЧ-анализаторов цепей. Исходя из полученных данных, ученым удалось описать модель того, как происходит гигантское изменение резонансной частоты в образцах «сверхпроводник — ферромагнетик — сверхпроводник».
«Данная работа является частью целого научного направления, начатого нашей группой еще в 2015 году, на данный момент результаты исследований опубликованы в более чем 15 высокорейтинговых журналах», — добавил Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ, заведующий лабораторией сверхпроводящих и квантовых технологий ВНИИА им. Н. Л. Духова.
Как отмечают исследователи, результаты работы могут найти применение в криогенной СВЧ-электронике и магнонике, например при разработке элементов транзисторов, диодов и фильтров.