7 January 2024, 12:00

Выращены микроалмазы с оловом для квантовых компьютеров

Квантовые компьютеры позволяют решать некоторые задачи — например, моделировать молекулярные системы — значительно быстрее, чем самые мощные «классические» суперкомпьютеры. Они работают на основе кубитов — квантовых вычислительных элементов, которые служат альтернативой битам в обычных компьютерах и способны совершать более сложные операции, тем самым увеличивая скорость вычислений.

Выращены микроалмазы с оловом для квантовых компьютеров
Схема синтеза алмазов с центрами окраски из олова
Source: Вадим Седов

Роль кубитов могут играть примесные центры окраски из олова, германия или кремния в алмазах. Включения этих элементов в кристаллическую решетку приводят к появлению новых спиновых состояний, что может использоваться для кодирования информации. Трудность заключается в том, что такие состояния получаются только при крайне низких температурах. В случае кремниевых и германиевых центров речь идет о температурах ниже 1 Кельвина (или -272°C), тогда как у оловянных центров рабочая температура несколько выше 2–5 Кельвинов (от -271°C до -268°C). Это значит, что разрабатывать квантовые устройства на оловянных центрах будет проще и дешевле. Однако надежного метода синтеза крупных высококачественных алмазов с включениями олова до сих пор нет. Созданные сегодня кристаллы или значительно меньше требуемого размера, или обладают недостаточно хорошими оптическими свойствами.

Ученые из Института общей физики имени А. М. Прохорова РАН (Москва) с коллегами впервые в мире создали в СВЧ-плазме алмазные микрочастицы с одиночными центрами окраски из олова. Авторы вырастили алмазы в реакторе, заполненном метаном и водородом. Исследователи поместили в установку затравочные кристаллы алмаза, а также частицы оксида олова и нагрели их СВЧ-излучением (микроволновой плазмой) до температур около 1000°C. Метан при этом служил источником атомов углерода — «строительных блоков» для растущего алмаза, а водород извлекал из частиц отдельные атомы олова, которые сначала поступали в газовую среду, а затем оседали на поверхность алмаза и включались в его кристаллическую решетку.

Авторы исследовали структуру полученных кристаллов с помощью растрового электронного микроскопа. Частицы имели размер 2–4 микрометра (что сопоставимо со средним размером бактерий) и характерную для высококачественных алмазов форму кубооктаэдров — многогранников с чередующимися треугольными и прямоугольными гранями.

Кроме того, исследователи оценили оптические свойства кристаллов, изучив спектры люминесценции образцов. Полученные результаты подтвердили, что в кристаллическую решетку некоторых алмазов действительно встроились частицы олова, однако большинство образцов оказались обычными алмазами без центров окраски. Это подчеркивает, что включать атомы олова в алмазы довольно трудно, однако предлагаемый авторами метод принципиально позволяет это сделать.

«Наша работа доказала, что изготовить высококачественные алмазы с оловом вполне реально. Получаемые предложенным нами способом алмазы будут полезны в области оптической сенсорики температуры, квантовой оптики, а также для хранения и передачи квантовой информации. В дальнейшем мы планируем совершенствовать методику для синтеза высококачественных пленок с включениями олова на макроскопических алмазных кристаллах размером в несколько миллиметров», — рассказал руководитель проекта, поддержанного грантом РНФ, Вадим Седов, кандидат физико-математических наук, старший научный сотрудник лаборатории алмазных материалов Института общей физики РАН.

В исследовании также принимали участие сотрудники Физического института имени П. Н. Лебедева РАН (Москва), МИРЭА — Российского технологического университета (Москва), Московского педагогического государственного университета (Москва) и Школы физики и астрономии Кардиффского университета (Великобритания).

Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда (РНФ), опубликованы в журнале Philosophical Transactions of the Royal Society A.

Source:  Пресс-служба РНФ

News article publications

Read also

Разработана модель, описывающая механизмы формирования плазменных нитей
Ученые разработали самосогласованную электродинамическую модель, которая описывает условия формирования в микроволновых разрядах атмосферного давления плазменных филаментов — тонких нитей в газе с повышенной электронной плотностью и температурой. Такие разряды используются в плазмохимии для высокоэффективного синтеза азотных удобрений, водорода, а также объемных наноструктур, например углеродных нанотрубок, широко используемых в электронике и оптике. Предложенная модель поможет усовершенствовать микроволновые источники плазмы атмосферного давления.
Electrodynamics
Plasma Physics
Synthesis
27 March 2024
Полимер из панцирей крабов поможет понять механизм борьбы со стрессом у томатов
Ученые из ФИЦ Биотехнологии РАН выяснили, что эффект, оказываемый на томаты природным полимером хитозаном, получаемым из панцирей ракообразных, в частности, крабов, зависит от его концентрации и периода воздействия. Ранее было известно, что это соединение повышает стрессоустойчивость взрослых растений, но молекулярный механизм этого влияния до сих пор оставался не до конца исследованным. Новые данные позволят использовать хитозан в качестве модулятора устойчивости к стрессу у сельскохозяйственных культур, в частности, растений томата.
Agricultural sciences
Botany
Synthesis
23 March 2024
Органические ионы сделают синтез азотсодержащих веществ экологичнее
Химики успешно опробовали органические катализаторы, с помощью которых можно переносить атомы водорода от одной молекулы к другой. Этот процесс широко используется в фармацевтике при производстве лекарств. Обнаруженное свойство позволит существенно расширить область применения таких катализаторов и заменить токсичные аналоги на основе тяжелых металлов во многих сферах, требующих химического синтеза.
"Green" chemistry
Organic Chemistry
Synthesis
21 March 2024
Исследованы свойства нового ферромагнетика
Команда физиков из Центра фотоники и двумерных материалов МФТИ исследовала электронные и магнитные свойства нового соединения Fe2C. Рассчитанные значения обменных взаимодействий и температуры магнитного перехода этого вещества указывают на наличие у этого материала ряда особых свойств. Теоретическое исследование показывает актуальность синтеза указанного вещества, ставя новые задачи перед экспериментаторами и инженерами.
Materials Science
Spintronics
Synthesis
31 January 2024
Катализаторы из винной кислоты повысят оптическую чистоту органических молекул
Ученые создали металлокомплексные катализаторы на основе палладия и органических молекул, содержащих атомы серы и фосфора. Использование этих катализаторов позволяет получать соединения с оптической чистотой до 99%. Оптическая чистота важна при производстве лекарств, витаминов и пестицидов, поскольку она влияет на их биологическую активность.
Catalysis
Organic Chemistry
Synthesis
25 January 2024
Три металла и новая технология упростят получение ненасыщенных спиртов
Ученые синтезировали катализатор на основе наночастиц платины, оксидов церия и циркония, который позволяет превращать ненасыщенные альдегиды в ненасыщенные спирты. Такая реакция нужна при создании духов, отдушек и лекарств. При использовании нового катализатора избирательность и эффективность процесса достигли 100%. Это значит, что при синтезе протекала только необходимая ученым реакция, после которой не оставалось побочных продуктов.
Catalysis
Nanotechnology
Synthesis
23 January 2024