15 March 2024, 12:00

Изменение палеоклимата стало причиной подъема уровня воды в древнем Каспии

Каспийское море — крупнейший в мире водоем, напрямую не сообщающийся с океаном. Исследования указывают на то, что уровень Каспийского моря за всю историю его существования сильно менялся: разница между минимальным и максимальным значениями достигала более 100 метров. Самое известное и масштабное повышение уровня моря — Хвалынская трансгрессия — произошло в период 18–13 тысяч лет назад. В течение этого времени уровень Каспийского моря держался более чем на 50 метров выше современного. Ученые выдвигали немало гипотез, объясняющих причины Хвалынской трансгрессии. Большинство из них сводилось к поиску ответа на вопрос: каков источник огромного притока воды, необходимого для столь высокого подъема древнего моря в холодном и сравнительно сухом климате того времени? Многие ученые объясняли это явление дополнительным притоком воды в Каспий, который возник, во-первых, в результате таяния гигантского Скандинавского ледника, а во-вторых, из ледниковых озер с реками, которые сейчас не впадают в Каспий. Еще одним подтверждением огромной водности древних рек бассейна Каспийского моря стали найденные на Русской равнине следы когда-то существовавших русел, во много раз превышающих по размерам современные реки.

Изменение палеоклимата стало причиной подъема уровня воды в древнем Каспии
Бурение палеорусел
Source: Вадим Украинцев

Научный коллектив, объединяющий гидрологов из Института водных проблем РАН (Москва), геоморфологов, палеогеографов, климатологов и океанологов из Института географии РАН (Москва), Института физики атмосферы имени А. М. Обухова РАН (Москва), Московского государственного университета имени М. В. Ломоносова и Института океанологии имени П. П. Ширшова РАН (Москва), поставил амбициозную задачу: найти с помощью современных методов моделирования и палеогеографического анализа наиболее вероятные причины формирования Хвалынской трансгрессии Каспия.

Работа велась по нескольким направлениям. Группа климатологов и океанологов с помощью современных численных моделей общей циркуляции атмосферы и океана исследовала климатические условия разных периодов существования Каспия, его водный и тепловой режимы с учетом динамики ледового покрова. Ученые показали, что уровень моря, характерный для периода Хвалынской трансгрессии, мог поддерживаться, если приток воды в Каспий был на 30–50% выше современного с учетом незначительного испарения с поверхности моря.

Группа палеогеографов и геоморфологов изучила следы древних русел рек на Русской равнине, которые несли свои воды в Каспий. Отобрав сотни образцов грунта и исследовав их на современном аналитическом оборудовании, ученые показали, что возраст этих русел составляет 17,5–14 тысяч лет, то есть совпадает с периодом Хвалынской трансгрессии. Рассчитанный объем водного стока, поступавшего в Каспийское море по этим огромным руслам, также оказался близок к оценкам, полученным при моделировании.

Третья группа исследователей — гидрологическая — с помощью численной модели воспроизвела процессы, которые могли привести к формированию столь масштабного притока воды в море в исследуемый период. Ученые показали, что основной причиной стало повсеместное распространение многолетней мерзлоты, которая препятствовала впитыванию воды в почву и испарению. В этих условиях даже пониженные по сравнению с современными атмосферные осадки могли сформировать речной сток на 40% больше современного.

«Выполненные модельные расчеты и результаты палеогеографического анализа подтвердили гипотезу о том, что подъем уровня древнего Каспия на десятки метров выше современного мог произойти в холодном и сравнительно сухом климате 18–13 тысяч лет назад, когда вклад талых ледниковых вод либо уже отсутствовал, поскольку ледник растаял, либо был незначимым. Независимые оценки, полученные тремя группами исполнителей проекта, дали сходные величины: приток воды в Каспий был до полутора раз больше современного, что обеспечивало поддержание столь высокого уровня моря при небольшом испарении с его поверхности. Такой приток в отсутствие ледникового стока объясняется распространением на Русской равнине многолетнемерзлых пород», — рассказывает руководитель проекта, поддержанного грантом РНФ, Александр Гельфан, доктор физико-математических наук, член-корреспондент РАН, главный научный сотрудник Института водных проблем РАН.

В дальнейшем авторы планируют продолжить исследования по реконструкции масштабных подъемов и падений уровня Каспийского моря в другие эпохи как отражения изменений климата. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в одном из ведущих европейских журналов Hydrology and Earth System Sciences.

Source:  Пресс-служба РНФ

News article labs

Department of Paleogeography of the Quaternary Period of the IG RAS
Institute of Geography of the Russian Academy of Sciences
Institute of Geography of the Russian Academy of Sciences
The department is engaged in a comprehensive study of the natural environment of the Quaternary period (the last 2.6 million years).
Geography
Geology
Regional Hydrology Lab
Water Problems Institute of the Russian Academy of Sciences
Water Problems Institute of the Russian Academy of Sciences
The laboratory's activities are related to solving a wide range of fundamental and applied problems in the field of hydrology and meteorology, including: - Assessment of hydrological consequences of current and future climate change in the Amur, Volga, Lena, Yenisei, Ob, Don, Ural, Kuban, Northern Dvina, Pechora, Mezen, Onega, Selenga, Kolyma, and Crimean river basins based on runoff formation models and scenario data from an ensemble of Earth System models - Development of process-based models of runoff formation in river basins of different spatial scales and located in different natural zones of the European and Asian parts of the Russian Federation - Creation of the National Hydrological Modeling System based on the ECOMAG platform for information support of decision-making in the field of hydro-ecological security of the Russian Federation - Short-term forecast of water inflow to reservoirs in the Volga, Amur and Angara basins using meteorological forecasts - Long-term ensemble forecast of spring water inflow to the Volga basin reservoirs - Flood hazard assessment and flood control effect of existing and projected reservoirs in the Amur River basin based on runoff formation and hydrodynamic models - Attribution of the contribution of natural and anthropogenic components of climate change to the water regime variability of rivers - Technology of hydroinformational support in the management of the Volga-Kama and Angara-Yenisei reservoir cascades - Investigation of conditions for generation of extreme hydrological events, description of their dynamics in time and space - Estimation of the Volga River flow based on the results of hydrological modeling using paleoclimatic and paleogeographic data - Estimation of changes in the scale and duration of flooding in the Lena, Ob, and Northern Dvina basins under future climate changes - Calculations of spatial distribution of characteristics of hydrological cycle components within river basins based on runoff formation models - Assessment of anthropogenic pollution of river basins by heavy metals for environmental monitoring (Belaya River and rivers of the Kola Peninsula) - Estimation of runoff changes in the Caucasus rivers due to melting glaciers - Application of satellite altimetry data together with hydrodynamic modeling for estimation of river water levels
Geography
Hydrology
Meteorology

News article organizations

News article publications

Read also

Обнаружены аномально высокие внутренние волны в Арктике
Молодежная группа ученых-океанологов впервые обнаружила аномально высокие внутренние волны в российском секторе Арктики. Ученые проводили измерения в проливе Карские Ворота, соединяющем Баренцево и Карское моря. Было выявлено, что при взаимодействии морских течений с неровным дном пролива регулярно возникают аномально мощные внутренние волны высотой до 40 метров. Открытие столь мощных внутренних волн может быть полезным в решении ряда прикладных задач, связанных с разведкой и добычей нефтегазовых месторождений в Арктике, прокладкой трубопроводов и подводных коммуникаций, обеспечением безопасности судоходства по Северному морскому пути.
Hydrogeology
Hydrology
Oceanology
14 February 2024
Гидрогеологи оценили эрозию берегов крупнейших сибирских рек
Полученные данные позволят прогнозировать, как изменения климата и человеческая деятельность повлияют на арктические моря, куда несут свои воды эти реки
Hydrogeology
Hydrology
26 June 2023
Фотоловушки на берегах степных рек помогут спрогнозировать будущее Арктики
По одной из гипотез, четкообразные реки степей являются реликтами ледникового периода, а значит то, что происходит на них, можно экстраполировать и на арктические реки в условиях глобальных изменений климата
Hydrogeology
Hydrology
4 May 2023
Сток древних рек Западной Сибири был в несколько раз больше современного
К такому выводу пришел географ МГУ, который реконструировал гидрологический режим крупных извилистых рек Западно-Сибирской равнины в позднеледниковый период, то есть 16-18 тысяч лет назад
Geography
Hydrology
Mathematical modeling
14 April 2023
Новый алгоритм поможет при дистанционном мониторинге качества «цветущей» воды
Он позволяет эффективно избавить от атмосферных помех на спутниковых снимках — точность подхода составила до 95%
Ecology
Geography
Hydrology
New techniques
29 December 2022
По спутниковым измерениям выяснено, что влияет на соленость Чукотского моря
Ученые Морского гидрофизического института РАН впервые выявили два основных типа межгодового распределения солёности в Чукотском море – «западный» и «восточный». Как оказалось, ключевую роль в их формировании играет динамика Восточно-Сибирского течения. Полученные оценки вносят значительный вклад в понимание сложных процессов взаимодействия Тихого и Северного Ледовитого океанов. Эти данные важны для планирования судоходства и мониторинга изменений климата в Арктике.
Hydrology
Hydrophysics
Oceanology
6 February 2024