Human Immunology

Elsevier
Elsevier
ISSN: 01988859, 18791166

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
SCImago
Q2
WOS
Q3
Impact factor
3.1
SJR
0.781
CiteScore
5.4
Categories
Immunology and Allergy
Medicine (miscellaneous)
Immunology
Areas
Immunology and Microbiology
Medicine
Years of issue
1980-2025
journal names
Human Immunology
HUM IMMUNOL
Publications
15 647
Citations
128 260
h-index
105
Top-3 citing journals
Human Immunology
Human Immunology (10416 citations)
Tissue Antigens
Tissue Antigens (5494 citations)
Frontiers in Immunology
Frontiers in Immunology (3519 citations)
Top-3 organizations
Top-3 countries
USA (4896 publications)
Germany (562 publications)
China (536 publications)

Most cited in 5 years

Found 
from chars
Publications found: 900
4b Electrophilic Aromatic Substitution
Weaver G.W.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0  |  Abstract
Chapter 4 4b Electrophilic Aromatic Substitution G. W. Weaver, G. W. Weaver Department of Chemistry, Loughborough University, Loughborough, Leicestershire, UKSearch for more papers by this author G. W. Weaver, G. W. Weaver Department of Chemistry, Loughborough University, Loughborough, Leicestershire, UKSearch for more papers by this author Book Editor(s):Mark Moloney, Mark Moloney University of Oxford, Mansfield Road, Oxford, UK, OX1 3TA United KingdomSearch for more papers by this author First published: 15 March 2024 https://doi.org/10.1002/9781119716846.ch4bBook Series:Organic Reaction Mechanisms Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Functionalized arenes and heterocycles continue to serve as essential compounds in industry and academic research. Electrophilic aromatic substitution (EAS) remains one of the most important processes for introducing the diverse array of functionality required for new applications, and novel synthetic methods and investigations into the underlying mechanisms of EAS reactions continue to receive much attention. There is a growing use of artificial intelligence and machine learning to assist in identifying likely products of reactions or the best conditions to apply in synthesis. Improved methods for halogenation continue to be an important area of investigation in EAS. Studies on the mechanisms of new bromination methods continue to receive attention. Mechanisms for reactions to introduce sulfur-containing functionality have appeared. Metals are key to many electrophilic substitution processes as catalysts or stoichiometric reagents, and C–H insertion reactions feature prominently. References Makosza , M. , Chem. – Eur. J. , 26 , 15346 ( 2020 ). 10.1002/chem.202003770 CASPubMedWeb of Science®Google Scholar Madasu , J. , Shinde , S. , Das , R. , Patel , S. , and Shard , A. , Org. Biomol. Chem. , 18 , 8346 ( 2020 ). 10.1039/D0OB01382J CASPubMedWeb of Science®Google Scholar Mekheimer , R. A. , Al-Sheikh , M. A. , Medrasi , H. Y. , and Sadek , K. U. , RSC Adv. , 10 , 19867 ( 2020 ). 10.1039/D0RA02786C CASPubMedWeb of Science®Google Scholar Zheng , K. X. , Jiang , L. , Yu , S. T. , Xian , M. , Song , Z. Q. , Liu , S. W. , and Xu , C. , RSC Adv. , 10 , 38085 ( 2020 ). 10.1039/D0RA06167K CASPubMedWeb of Science®Google Scholar Cao , L. W. , Kabeshov , M. , Ley , S. V. , and Lapkin , A. A. , Beilstein J. Org. Chem. , 16 , 1465 ( 2020 ). 10.3762/bjoc.16.122 CASPubMedWeb of Science®Google Scholar Zhou , M. M. , Park , S. , and Dang , L. , Org. Chem. Front. , 7 , 944 ( 2020 ). 10.1039/C9QO01437C CASWeb of Science®Google Scholar Zhang , J. , Zhao , T. , Xie , J. , He , Z. D. , and Yu , W. W. , Tetrahedron , 76 ( 2020 ). Google Scholar Martin , J. , Eyselein , J. , Grams , S. , and Harder , S. , ACS Catal. , 10 , 7792 ( 2020 ). 10.1021/acscatal.0c01359 CASWeb of Science®Google Scholar Zhou , Y. , Yang , Z. L. , Wei , T. , Gu , L. Z. , and Zhu , Y. B. , ACS Omega , 5 , 23613 ( 2020 ). 10.1021/acsomega.0c02162 CASPubMedWeb of Science®Google Scholar Sousa , J. P. M. , Neves , R. P. P. , Sousa , S. F. , Ramos , M. J. , and Fernandes , P. A. , ACS Catal. , 10 , 9545 ( 2020 ). 10.1021/acscatal.0c03122 CASWeb of Science®Google Scholar Fricke , C. , Deckers , K. , and Schoenebeck , F. , Angew. Chem. Int. Ed. , 59 , 18717 ( 2020 ). 10.1002/anie.202008372 CASPubMedWeb of Science®Google Scholar Liu , Q. Z. , Xu , X. , Wang , L. , and Wang , D. H. , Chem. Eng. J. , 400 , 125901 ( 2020 ). Google Scholar Mamontov , A. , Martin-Mingot , A. , Metayer , B. , Karam , O. , Zunino , F. , Bouazza , F. , and Thibaudeau , S. , Chem. – Eur. J. , 26 , 10411 ( 2020 ). 10.1002/chem.202000902 CASPubMedWeb of Science®Google Scholar Rogers , D. A. , Hopkins , M. D. , Rajagopal , N. , Varshney , D. , Howard , H. A. , LeBlanc , G. , and Lamar , A. A. , ACS Omega , 5 , 7693 ( 2020 ). 10.1021/acsomega.0c00631 CASPubMedWeb of Science®Google Scholar Qu , Z. W. , Zhu , H. , and Grimme , S. , ChemCatChem 13 , 207 ( 2020 ). 10.1002/cctc.202001396 Web of Science®Google Scholar Lee , Y. M. , Lee , G. , Kim , M. K. , and Zoh , K. D. , Chem. Eng. J. , 393 , 124780 ( 2020 ). Google Scholar Starikov , A. S. , Kalashnikov , V. V. , Tarakanov , P. A. , Simakov , A. O. , Simonov , S. V. , Tkachev , V. V. , Yarkov , A. V. , Kazachenko , V. P. , Chernyak , A. V. , Zhurkin , F. E. , Tomilova , L. G. , and Pushkarev , V. E. , Eur. J. Org. Chem. , 2020 , 5852 ( 2020 ). 10.1002/ejoc.202000958 CASWeb of Science®Google Scholar Puleo , T. R. and Bandar , J. S. , Chem. Sci. , 11 , 10517 ( 2020 ). 10.1039/D0SC02689A CASPubMedWeb of Science®Google Scholar Richards , K. , Petit , E. , Legrand , Y. M. , and Grison , C. , Chem. – Eur. J. 27 , 809 , ( 2021 ). 10.1002/chem.202003827 CASPubMedWeb of Science®Google Scholar Henry , M. C. , Abbinante , V. M. , and Sutherland , A. , Eur. J. Org. Chem. , 2020 , 2819 ( 2020 ). 10.1002/ejoc.202000014 CASWeb of Science®Google Scholar Granados , A. , Shafir , A. , Arrieta , A. , Cossio , F. P. , and Vallribera , A. , J. Org. Chem. , 85 , 2142 ( 2020 ). 10.1021/acs.joc.9b02784 CASPubMedWeb of Science®Google Scholar Qu , Z. W. , Zhu , H. , and Grimme , S. , ChemCatChem , 12 , 6186 ( 2020 ). 10.1002/cctc.202001392 CASWeb of Science®Google Scholar Song , S. Z. , Dong , Y. R. , Ge , G. P. , Li , Q. , and Wei , W. T. , Synthesis-Stuttgart , 52 , 796 ( 2020 ). 10.1055/s-0040-1707835 CASWeb of Science®Google Scholar Sasmal , S. , Sinha , S. K. , Lahiri , G. K. , and Maiti , D. , Chem. Commun. (Cambridge, U. K.) , 56 , 7100 ( 2020 ). 10.1039/D0CC02851G CASPubMedWeb of Science®Google Scholar Louka , S. , Barry , S. M. , Heyes , D. J. , Mubarak , M. Q. E. , Ali , H. S. , Alkhalaf , L. M. , Munro , A. W. , Scrutton , N. S. , Challis , G. L. , and de Visser , S. P. , J. Am. Chem. Soc. , 142 , 15764 ( 2020 ). 10.1021/jacs.0c05070 CASPubMedWeb of Science®Google Scholar Choi , I. , Messinis , A. M. , and Ackermann , L. , Angew. Chem. Int. Ed. , 59 , 12534 ( 2020 ). 10.1002/anie.202006164 CASPubMedWeb of Science®Google Scholar Zhao , G. K. , Samanta , S. S. , Michieletto , J. , and Roche , S. P. , Org. Lett. , 22 , 5822 ( 2020 ). 10.1021/acs.orglett.0c01895 CASPubMedWeb of Science®Google Scholar Li , X. , Ren , B. , Xie , X. , Tian , Z. , Chen , F. Y. , Gamble , A. B. , and Han , B. , Tetrahedron Lett. , 61 ( 2020 ). Google Scholar Wang , Y. , Fang , Z. X. , Chen , X. C. , and Wang , Y. H. , Chem. – Eur. J. , 26 , 6740 ( 2020 ). 10.1002/chem.202001173 CASPubMedWeb of Science®Google Scholar Somekh , M. , Iron , M. A. , Khenkin , A. M. , and Neumann , R. , Chem. Sci. , 11 , 11584 ( 2020 ). 10.1039/D0SC04936K CASPubMedWeb of Science®Google Scholar Sandfort , F. , Knecht , T. , Pinkert , T. , Daniliuc , C. G. , and Glorius , F. , J. Am. Chem. Soc. , 142 , 6913 ( 2020 ). 10.1021/jacs.0c01630 CASPubMedWeb of Science®Google Scholar Wei , Y. T. , Liu , Y. L. , He , J. , Li , X. Z. , Liu , P. , and Zhang , J. , Tetrahedron , 76 , 131646 ( 2020 ). 10.1016/j.tet.2019.130794 Google Scholar Hu , Y. D. , Yan , L. M. , and Yue , B. H. , ACS Omega , 5 , 13219 ( 2020 ). 10.1021/acsomega.0c01252 CASPubMedWeb of Science®Google Scholar Parreno , R. P. , Liu , Y. L. , Beltran , A. B. , and Carandang , M. B. , RSC Adv. , 10 , 14198 ( 2020 ). 10.1039/D0RA01285H CASPubMedWeb of Science®Google Scholar Zhu , W. H. and Gunnoe , T. B. , Acc. Chem. Res. , 53 , 920 ( 2020 ). 10.1021/acs.accounts.0c00036 CASPubMedWeb of Science®Google Scholar Al Mamari , H. H. , Stefane , B. , and Zugelj , H. B. , Tetrahedron , 76 , 130925 ( 2020 ). 10.1016/j.tet.2020.130925 Google Scholar Bera , S. S. and Maji , M. S. , Org. Lett. , 22 , 2615 ( 2020 ). 10.1021/acs.orglett.0c00589 CASPubMedWeb of Science®Google Scholar Shi , W. Y. , Ding , Y. N. , Liu , C. , Zheng , N. , Gou , X. Y. , Li , M. , Zhang , Z. , Liu , H. C. , Niu , Z. J. , and Liang , Y. M. , Chem. Commun. (Cambridge, U. K.) , 56 , 12729 ( 2020 ). 10.1039/D0CC05491G CASPubMedWeb of Science®Google Scholar Messinis , A. M. , Finger , L. H. , Hu , L. R. , and Ackermann , L. , J. Am. Chem. Soc. , 142 , 13102 ( 2020 ). 10.1021/jacs.0c04837 CASPubMedWeb of Science®Google Scholar Kuribara , T. , Matsumoto , K. , Nagasawa , S. , Suzuki , Y. , Nakajima , M. , Hamada , Y. , and Nemoto , T. , Tetrahedron , 76 , 131146 ( 2020 ). 10.1016/j.tet.2020.131146 Google Scholar Liu , Y. , Wu , G. Q. , Hu , R. S. , and Gao , G. J. , Chem. Eng. J. , 402 , 126252 ( 2020 ). PubMedGoogle Scholar Pozhydaiev , V. , Power , M. , Gandon , V. , Moran , J. , and Leboeuf , D. , Chem. Commun. (Cambridge, U. K.) , 56 , 11548 ( 2020 ). 10.1039/D0CC05194B CASPubMedWeb of Science®Google Scholar Kabi , A. K. , Gujjarappa , R. , Vodnala , N. , Kaldhi , D. , Tyagi , U. , Mukherjee , K. , and Malakar , C. C. , Tetrahedron Lett. , 61 , 152535 ( 2020 ). 10.1016/j.tetlet.2020.152535 Google Scholar Wang , S. D. , Force , G. , Guillot , R. , Carpentier , J. F. , Sarazin , Y. , Bour , C. , Gandon , V. , and Leboeuf , D. , ACS Catal. , 10 , 10794 ( 2020 ). 10.1021/acscatal.0c02959 CASWeb of Science®Google Scholar Colomer , I. , ACS Catal. , 10 , 6023 ( 2020 ). 10.1021/acscatal.0c00872 CASWeb of Science®Google Scholar Sun , J. N. , Gui , Y. , Huang , Y. K. , Li , J. D. , Zha , Z. G. , Yang , Y. , and Wang , Z. Y. , ACS Omega , 5 , 11962 ( 2020 ). 10.1021/acsomega.9b04115 CASPubMedWeb of Science®Google Scholar Riegel , G. F. and Kass , S. R. , J. Org. Chem. , 85 , 6017 ( 2020 ). 10.1021/acs.joc.0c00498 CASPubMedWeb of Science®Google Scholar Zheng , H. F. , Dong , K. Y. , Wherritt , D. , Arman , H. , and Doyle , M. P. , Angew. Chem. Int. Ed. , 59 , 13613 ( 2020 ). 10.1002/anie.202004328 CASPubMedWeb of Science®Google Scholar Gorbunova , Y. , Zakusilo , D. N. , Boyarskaya , I. A. , and Vasilyev , A. V. , Tetrahedron , 76 , 131264 ( 2020 ). 10.1016/j.tet.2020.131264 Google Scholar Kurouchi , H. , Chem. Commun. (Cambridge, U. K.) , 56 , 8313 ( 2020 ). 10.1039/D0CC01969K CASPubMedWeb of Science®Google Scholar Wang , D. , Ma , Z. S. , Wang , N. N. , Li , C. Y. , Wang , T. , Liang , Y. , and Zhang , Z. T. , Chem. Commun. (Cambridge, U. K.) , 56 , 10369 ( 2020 ). Google Scholar Shi , L. J. , Liu , Y. , Wang , C. X. , Yuan , X. X. , Liu , X. B. , Wu , L. L. , Pan , Z. T. A. , Yu , Q. C. , Xu , C. L. , and Yang , G. Y. , RSC Adv. , 10 , 13929 ( 2020 ). 10.1039/D0RA01237H CASPubMedWeb of Science®Google Scholar Jagtap , R. A. , Samal , P. P. , Vinod , C. P. , Krishnamurty , S. , and Punji , B. , ACS Catal. , 10 , 7312 ( 2020 ). 10.1021/acscatal.0c02030 CASWeb of Science®Google Scholar Wang , J. , Pang , Y. B. , Tao , N. , Zeng , R. S. , and Zhao , Y. S. , Org. Lett. , 22 , 854 ( 2020 ). 10.1021/acs.orglett.9b04327 CASPubMedWeb of Science®Google Scholar Chang , M. Y. , Tsai , Y. L. , and Chen , H. Y. , J. Org. Chem. , 85 , 6897 ( 2020 ). 10.1021/acs.joc.0c00035 CASPubMedWeb of Science®Google Scholar Guo , Y. J. , Guo , X. , Kong , D. Z. , Lu , H. J. , Liu , L. T. , Hua , Y. Z. , and Wang , M. C. , J. Org. Chem. , 85 , 4195 ( 2020 ). 10.1021/acs.joc.9b03378 CASPubMedWeb of Science®Google Scholar Li , Q. Z. , Liu , J. X. , Wei , Y. , and Shi , M. , J. Org. Chem. , 85 , 2438 ( 2020 ). 10.1021/acs.joc.9b03126 CASPubMedWeb of Science®Google Scholar Yang , S. W. , Bour , C. , and Gandon , V. , ACS Catal. , 10 , 3027 ( 2020 ). 10.1021/acscatal.9b05509 CASWeb of Science®Google Scholar Li , Z. L. , Yang , S. W. , Thiery , G. , Gandon , V. , and Bour , C. , J. Org. Chem. , 85 , 12947 ( 2020 ). 10.1021/acs.joc.0c01585 CASPubMedWeb of Science®Google Scholar Nagahora , N. , Tanaka , R. , Tada , T. , Yasuda , A. , Yamada , Y. , Shioji , K. , and Okuma , K. , Org. Lett. , 22 , 6192 ( 2020 ). 10.1021/acs.orglett.0c02292 CASPubMedWeb of Science®Google Scholar Ye , X. Z. , Xu , B. H. , Sun , J. N. , Dai , L. , Shao , Y. L. , Zhang , Y. T. , and Chen , J. X. , J. Org. Chem. , 85 , 13004 ( 2020 ). 10.1021/acs.joc.0c01654 CASPubMedWeb of Science®Google Scholar Tu , Y. Z. , Xu , G. Z. , Jiang , L. , Hu , X. J. , Xu , J. , Xie , X. C. , and Li , A. M. , Chem. Eng. J. , 382 , 123015 ( 2020 ). 10.1016/j.cej.2019.123015 Google Scholar Huang , Q. Y. , Chai , K. G. , Zhou , L. Q. , and Ji , H. B. , Chem. Eng. J. , 387 , 124020 ( 2020 ). Google Scholar Foley , B. L. and Bhan , A. , ACS Catal. , 10 , 10436 ( 2020 ). 10.1021/acscatal.0c02991 CASWeb of Science®Google Scholar Yanagawa , M. , Kobayashi , M. , Ikeda , M. , Harada , S. , and Nemoto , T. , Chem. Pharm. Bull. , 68 , 1104 ( 2020 ). 10.1248/cpb.c20-00557 CASPubMedWeb of Science®Google Scholar Tang , W. K. , Tang , F. , Xu , J. , Zhang , Q. , Dai , J. J. , Feng , Y. S. , and Xu , H. J. , Chem. Commun. (Cambridge, U. K.) , 56 , 1497 ( 2020 ). 10.1039/C9CC09586A CASPubMedWeb of Science®Google Scholar Shen , Y. , Shen , M. L. , and Wang , P. S. , ACS Catal. , 10 , 8247 ( 2020 ). 10.1021/acscatal.0c02660 CASWeb of Science®Google Scholar Cui , B. B. , Gao , J. , Fan , L. , Jiao , Y. , Lu , T. , and Feng , J. , J. Org. Chem. , 85 , 6206 ( 2020 ). 10.1021/acs.joc.0c00573 CASPubMedWeb of Science®Google Scholar Liao , M. H. , Zhang , M. , Hu , D. H. , Zhang , R. H. , Zhao , Y. , Liu , S. S. , Li , Y. X. , Xiao , W. L. , and Tang , E. , Org. Biomol. Chem. , 18 , 4034 ( 2020 ). 10.1039/D0OB00257G CASPubMedWeb of Science®Google Scholar Gerosa , G. G. , Marcarino , M. O. , Spanevello , R. A. , Suarez , A. G. , and Sarotti , A. M. , J. Org. Chem. , 85 , 9969 ( 2020 ). 10.1021/acs.joc.0c01256 CASPubMedWeb of Science®Google Scholar Hmmerling , S. , Vossnacker , P. , Steinhauer , S. , Beckers , H. , and Riedel , S. , Chem. – Eur. J. , 26 , 14377 ( 2020 ). 10.1002/chem.202001457 PubMedWeb of Science®Google Scholar Kumar , P. , Dutta , S. , Kumar , S. , Bahadur , V. , van der Eycken , E. V. , Vimaleswaran , K. S. , Parmar , V. S. , and Singh , B. K. , Org. Biomol. Chem. , 18 , 7987 ( 2020 ). 10.1039/D0OB01458C CASPubMedWeb of Science®Google Scholar Cotos , L. , Donzel , M. , Elhabiri , M. , and Davioud-Charvet , E. , Chem. – Eur. J. , 26 , 3314 ( 2020 ). 10.1002/chem.201904220 CASPubMedWeb of Science®Google Scholar Laha , J. K. , Hunjan , M. K. , Hegde , S. , and Gupta , A. , Org. Lett. , 22 , 1442 ( 2020 ). 10.1021/acs.orglett.0c00041 CASPubMedWeb of Science®Google Scholar Kusumaningsih , T. , Prasetyo , W. E. , and Firdaus , M. , RSC Adv. , 10 , 31824 ( 2020 ). 10.1039/D0RA05424K CASPubMedWeb of Science®Google Scholar Sheng , X. , Kazemi , M. , Zadlo-Dobrowolska , A. , Kroutil , W. , and Himo , F. , ACS Catal. , 10 , 570 ( 2020 ). 10.1021/acscatal.9b04208 CASPubMedWeb of Science®Google Scholar He , B. Q. , Gao , Y. , Wang , P. Z. , Wu , H. , Zhou , H. B. , Liu , X. P. , and Chen , J. R. , Synlett . 32 , 373 ( 2021 ). 10.1055/s-0040-1707252 CASWeb of Science®Google Scholar Otake , Y. , Shibata , Y. , Hayashi , Y. , Kawauchi , S. , Nakamura , H. , and Fuse , S. , Angew. Chem. Int. Ed. , 59 , 12925 ( 2020 ). 10.1002/anie.202002106 CASPubMedWeb of Science®Google Scholar Dosso , J. , Battisti , T. , Ward , B. D. , Demitri , N. , Hughes , C. E. , Williams , P. A. , Harris , K. D. M. , and Bonifazi , D. , Chem. – Eur. J. , 26 , 6608 ( 2020 ). 10.1002/chem.201905794 CASPubMedWeb of Science®Google Scholar Navakouski , M. J. , Zhylitskaya , H. , Chmielewski , P. J. , Zyla-Karwowska , M. , and Stepien , M. , J. Org. Chem. , 85 , 187 ( 2020 ). 10.1021/acs.joc.9b02556 CASPubMedWeb of Science®Google Scholar Karuppusamy , V. and Ilangovan , A. , Org. Lett. , 22 , 7147 ( 2020 ). 10.1021/acs.orglett.0c02484 CASPubMedWeb of Science®Google Scholar Micheletti , G. , Iannuzzo , L. , Calvaresi , M. , Bordoni , S. , Telese , D. , Chugunova , E. , and Boga , C. , RSC Adv. , 10 , 34670 ( 2020 ). 10.1039/D0RA05249C CASPubMedWeb of Science®Google Scholar Murugesan , K. , Donabauer , K. , and Konig , B. , Angew. Chem. Int. Ed. 60 , 2439 ( 2021 ) 10.1002/anie.202011815 CASPubMedWeb of Science®Google Scholar Chanda , R. , Chakraborty , B. , Rana , G. , and Jana , U. , Eur. J. Org. Chem. , 2020 , 61 ( 2020 ). 10.1002/ejoc.201901181 CASWeb of Science®Google Scholar Przydacz , A. , Dyguda , M. , Topolska , A. , Skrzynska , A. , Xu , C. J. , Chen , Y. C. , and Albrecht , L. , Org. Biomol. Chem. , 18 , 5816 ( 2020 ). 10.1039/D0OB00788A CASPubMedWeb of Science®Google Scholar Yang , Y. , Wei , X. R. , Zhang , Y. X. , Chi , X. , Huang , D. J. , Wang , F. , Wu , H. X. , and Ming , J. L. , Org. Biomol. Chem. , 18 , 7916 ( 2020 ). 10.1039/C9OB02590A CASPubMedWeb of Science®Google Scholar Pilipecz , M. V. , Varga , T. R. , Krall , P. , Vincze , Z. , Mucsi , Z. , Deme , R. , Szabo , P. T. , and Nemes , P. , Synth. Commun. , 50 , 1712 ( 2020 ). 10.1080/00397911.2020.1755439 CASWeb of Science®Google Scholar Organic Reaction Mechanisms 2020 ReferencesRelatedInformation
Oxidation and Reduction
Banerji K.K.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0
Molecular Rearrangements
Coxon J.M.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0  |  Abstract
Chapter 11 Molecular Rearrangements J. M. Coxon, J. M. Coxon Department of Chemistry and Physics, University of Canterbury, Christchurch, New ZealandSearch for more papers by this author J. M. Coxon, J. M. Coxon Department of Chemistry and Physics, University of Canterbury, Christchurch, New ZealandSearch for more papers by this author Book Editor(s):Mark Moloney, Mark Moloney University of Oxford, Mansfield Road, Oxford, UK, OX1 3TA United KingdomSearch for more papers by this author First published: 15 March 2024 https://doi.org/10.1002/9781119716846.ch11Book Series:Organic Reaction Mechanisms Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary A blue-light-induced [2,3]-sigmatropic rearrangement of sulfonium ylides has been reported from donor/acceptor diazoalkanes and propargyl sulfides to give functionalized allenes and is considered to occur via singlet carbene intermediates. A mechanism, named maleimide-assisted rearrangement and cycloaromatization, has been reported to trigger the reactivity of acyclic enediynes by a cascade 1,3-proton transfer processes to enable acyclic enediynes to undergo cycloaromatization. Computational studies have been reported to gain insights into the potential energy surfaces of competing Lewis-acid catalyzed carbonyl-ene, Prins, and carbonyl-olefin metathesis reactions. Computational studies on the origin of enantioselectivity in the semipinacol rearrangement of vinylogous alpha-ketol cocatalyzed by a cinchona-based primary amine and Bronsted acids indicate the reaction proceeds via complexation, nucleophilic addition, dehydration, carbon atom migration, enamine–imine tautomerization, imine hydrolysis, and Walden inversion. References Orlowska , K. , Rybicka-Jasinska , K. , Krajewski , P. , and Gryko , D. , Org. Lett. , 22 , 1018 ( 2020 ). 10.1021/acs.orglett.9b04560 CASPubMedWeb of Science®Google Scholar Yuan , H. R. , Du , Y. B. , Liu , F. T. , Guo , L. R. , Sun , Q. Y. , Feng , L. , and Gao , H. Y. , Chem. Commun. (Cambridge, U. K.) , 56 , 8226 ( 2020 ). 10.1039/D0CC02919J CASPubMedWeb of Science®Google Scholar Fang , Z. Y. , Qi , L. , Song , J. Y. , Ren , P. X. , Hou , C. Y. , Ji , S. C. , Wang , L. J. , and Li , W. , Eur. J. Org. Chem. , 5464 ( 2020 ). 10.1002/ejoc.202000875 Google Scholar Dzieszkowski , K. , Baranska , I. , and Rafinski , Z. , J. Org. Chem. , 85 , 6645 ( 2020 ). 10.1021/acs.joc.0c00657 CASPubMedWeb of Science®Google Scholar Chen , W. W. , Cuenca , A. B. , and Shafir , A. , Angew. Chem., Int. Ed. , 59 , 16294 ( 2020 ). 10.1002/anie.201908418 CASPubMedWeb of Science®Google Scholar Chen , W. W. , Cunillera , A. , Chen , D. D. , Lethu , S. , de Moragas , A. L. , Zhu , J. , Sola , M. , Cuenca , A. B. , and Shafir , A. , Angew. Chem., Int. Ed. , 59 , 20201 ( 2020 ). 10.1002/anie.202009369 CASPubMedWeb of Science®Google Scholar Silva , F. , Van , N. T. , and Wengryniuk , S. E. , J. Am. Chem. Soc. , 142 , 64 ( 2020 ). 10.1021/jacs.9b11282 PubMedGoogle Scholar Miro , J. , Gensch , T. , Ellwart , M. , Han , S. J. , Lin , H. H. , Sigman , M. S. , and Toste , F. D. , J. Am. Chem. Soc. , 142 , 6390 ( 2020 ). 10.1021/jacs.0c01637 CASPubMedWeb of Science®Google Scholar Grassl , R. , Jandl , C. , and Bach , T. , J. Org. Chem. , 85 , 11426 ( 2020 ). 10.1021/acs.joc.0c01501 CASPubMedWeb of Science®Google Scholar Zhang , M. S. , Li , B. J. , Chen , H. M. , Lu , H. T. , Ma , H. L. , Cheng , X. Y. , Wang , W. B. , Wang , Y. , Ding , Y. , and Hu , A. G. , J. Org. Chem. , 85 , 9808 ( 2020 ). 10.1021/acs.joc.0c01124 CASPubMedWeb of Science®Google Scholar Adjieufack , A. I. , Nana , C. N. , Ketcha-Mbadcam , J. , Ndassa , I. M. , Andres , J. , Oliva , M. , and Safont , V. S. , ACS Omega , 5 , 22215 ( 2020 ). 10.1021/acsomega.0c02371 CASPubMedWeb of Science®Google Scholar Alonso , D. , Hernandez-Castillo , D. , Almagro , L. , Gonzalez-Aleman , R. , Molero , D. , Herranz , M. A. , Medina-Paez , E. , Coro , J. , Martinez-Alvarez , R. , Suarez , M. , and Martin , N. , J. Org. Chem. , 85 , 2426 ( 2020 ). 10.1021/acs.joc.9b03121 CASPubMedWeb of Science®Google Scholar Shen , X. Y. , Shatskiy , A. , Chen , Y. , Karkas , M. D. , Wang , X. S. , and Liu , J. Q. , J. Org. Chem. , 85 , 3560 ( 2020 ). 10.1021/acs.joc.9b03279 CASPubMedWeb of Science®Google Scholar Meng , H. X. , Xu , Z. H. , Qu , Z. H. , Huang , H. W. , and Deng , G. J. , Org. Lett. , 22 , 6117 ( 2020 ). 10.1021/acs.orglett.0c02180 CASPubMedWeb of Science®Google Scholar Zhang , H. and Zhou , R. , Eur. J. Org. Chem. Reactions. , 27 , 4098 ( 2020 ). 10.1002/ejoc.202000023 Web of Science®Google Scholar Wei , C. , Zhang , J. Q. , Zhang , J. J. , Liang , C. , and Mo , D. L. , Org. Chem. Front. , 7 , 1520 ( 2020 ). 10.1039/D0QO00224K CASWeb of Science®Google Scholar Xia , C. , Wang , D. C. , Qu , G. R. , and Guo , H. M. , Org. Chem. Front. , 7 , 1474 ( 2020 ). 10.1039/D0QO00128G CASWeb of Science®Google Scholar Xing , Y. Y. , Chen , S. S. , Chen , D. Z. , and Tantillo , D. J. , Phys. Chem. Chem. Phys. , 22 , 26955 ( 2020 ). 10.1039/D0CP05000H CASPubMedGoogle Scholar Becker , M. R. , Reid , J. P. , Rykaczewski , K. A. , and Schindler , C. S. , ACS Catal. , 10 , 4387 ( 2020 ). 10.1021/acscatal.0c00489 CASWeb of Science®Google Scholar Zhu , C. L. , Zeng , H. , Liu , C. , Cai , Y. Y. , Fang , X. J. , and Jiang , H. F. , Org. Lett. , 22 , 809 ( 2020 ). 10.1021/acs.orglett.9b04228 CASPubMedWeb of Science®Google Scholar Tang , Y. Z. , Zhuang , K. T. , Zhang , X. H. , Xie , F. K. , Yang , L. , Lin , B. , Cheng , M. S. , Li , D. , and Liu , Y. X. , Eur. J. Org. Chem. , 3441 ( 2020 ). Google Scholar Chen , Y. S. , Liu , Y. , Li , Z. J. , Dong , S. X. , Liu , X. H. , and Feng , X. M. , Angew. Chem., Int. Ed. , 59 , 8052 ( 2020 ). 10.1002/anie.201914645 CASPubMedWeb of Science®Google Scholar Fullenkamp , C. R. and Sulikowski , G. A. , Tetrahedron Lett. , 61 , 151856 ( 2020 ). 10.1016/j.tetlet.2020.151856 Google Scholar Delgado , K. R. , Youmans , D. D. , and Diver , S. T. , Org. Lett. , 22 , 750 ( 2020 ). 10.1021/acs.orglett.9b04594 CASPubMedWeb of Science®Google Scholar Kotha , S. and Cheekatla , S. R. , Org. Biomol. Chem. , 18 , 1377 ( 2020 ). 10.1039/C9OB02298H CASPubMedWeb of Science®Google Scholar Cowled , M. S. , Vuong , D. , Crombie , A. , Lacey , E. , Karuso , P. , and Piggott , A. M. , Org. Biomol. Chem. , 18 , 5879 ( 2020 ). 10.1039/D0OB01099E CASPubMedWeb of Science®Google Scholar Sato , H. , Yamazaki , M. , and Uchiyama , M. , Chem. Pharm. Bull. , 68 , 487 ( 2020 ). 10.1248/cpb.c20-00037 CASPubMedWeb of Science®Google Scholar Liu , X. Y. , Zou , Y. X. , Ni , H. L. , Zhang , J. , Dong , H. B. , and Chen , L. , Org. Chem. Front. , 7 , 980 ( 2020 ). 10.1039/D0QO00159G CASWeb of Science®Google Scholar Wong , W. S. , Lau , W. W. , Li , Y. K. , Liu , Z. F. , Kuck , D. , and Chow , H. F. , Chem. - Eur. J. , 26 , 4310 ( 2020 ). 10.1002/chem.201904949 CASPubMedWeb of Science®Google Scholar Kovacs , E. , Faigl , F. , and Mucsi , Z. , J. Org. Chem. , 85 , 11226 ( 2020 ). 10.1021/acs.joc.0c01310 CASPubMedWeb of Science®Google Scholar Wang , Y. C. , Liu , J. B. , Zhou , H. W. , Xie , W. L. , Rojsitthisak , P. , and Qiu , G. Y. S. , J. Org. Chem. , 85 , 1906 ( 2020 ). 10.1021/acs.joc.9b02590 CASPubMedWeb of Science®Google Scholar Oshimoto , K. , Zhou , B. , Tsuji , H. , and Kawatsura , M. , Org. Biomol. Chem. , 18 , 415 ( 2020 ). 10.1039/C9OB02450F CASPubMedGoogle Scholar Singh , K. , Kumar , P. , Jagadeesh , C. , Patel , M. , Das , D. , and Saha , J. , Adv. Synth. Catal. , 362 , 4130 ( 2020 ). 10.1002/adsc.202000815 CASWeb of Science®Google Scholar Cabre , A. , Rafael , S. , Sciortino , G. , Ujaque , G. , Verdaguer , X. , Lledos , A. , and Riera , A. , Angew. Chem., Int. Ed. , 59 , 7521 ( 2020 ). 10.1002/anie.201915772 CASPubMedWeb of Science®Google Scholar Raclea , R. C. , Natho , P. , Allen , L. A. T. , White , A. J. P. , and Parsons , P. J. , J. Org. Chem. , 85 , 9375 ( 2020 ). J. Org. Chem ., 85, 2168 (2020). 10.1021/acs.joc.0c00986 CASPubMedWeb of Science®Google Scholar Wu , Y. X. , Zhao , B. L. , Shi , Z. Z. , and Yuan , Y. , Tetrahedron , 76 , 130873 ( 2020 ). Google Scholar Alvarez , J. M. , Jorge , Z. D. , and Massanet , G. M. , Eur. J. Org. Chem. , 1673 ( 2020 ). Google Scholar Sanchez-Velandia , J. E. , Mejia , S. M. , and Villa , A. L. , J. Phys. Chem. A , 124 , 3761 ( 2020 ). 10.1021/acs.jpca.9b09622 CASPubMedGoogle Scholar Papastavrou , A. T. , Kidonakis , M. , Stratakis , M. , and Orfanopoulos , M. , J. Org. Chem. , 85 , 13324 ( 2020 ). 10.1021/acs.joc.0c01889 CASPubMedWeb of Science®Google Scholar Koide , T. , Maeda , T. , Abe , T. , Shiota , Y. , Yano , Y. , Ono , T. , Yoshizawa , K. , and Hisaeda , Y. , Eur. J. Org. Chem. , 1811 ( 2020 ). Google Scholar Im , J. K. , Yang , B. , Jeong , I. , Choi , J. H. , and Chung , W. J. , Tetrahedron Lett. , 61 , 152048 ( 2020 ). 10.1016/j.tetlet.2020.152048 Google Scholar Pshenichnyuk , S. A. and Asfandiarov , N. L. , Phys. Chem. Chem. Phys. , 22 , 16150 ( 2020 ). 10.1039/D0CP02647F CASPubMedGoogle Scholar Natho , P. , Allen , L. A. T. , and Parsons , P. J. , Tetrahedron Lett. , 61 , 151695 ( 2020 ). 10.1016/j.tetlet.2020.151695 Google Scholar Chaudhari , M. B. , Jayan , K. , and Gnanaprakasam , B. , J. Org. Chem. , 85 , 3374 ( 2020 ). 10.1021/acs.joc.9b03160 CASPubMedWeb of Science®Google Scholar Mboyi , C. D. , Poater , A. , Poater , J. , Duhayon , C. , and Chauvin , R. , J. Org. Chem. , 85 , 7452 ( 2020 ). 10.1021/acs.joc.0c00847 CASPubMedGoogle Scholar Strehl , J. , Kahrs , C. , Muller , T. , Hilt , G. , and Christoffers , J. , Chem. - Eur. J. , 26 , 3222 ( 2020 ). 10.1002/chem.201905570 CASPubMedWeb of Science®Google Scholar Hargitai , C. , Kovanyi-Lax , G. , Nagy , T. , Abranyi-Balogh , P. , Dancso , A. , Toth , G. , Halasz , J. , Pandur , A. , Simig , G. , and Volk , B. , Beilstein J. Org. Chem. , 16 , 1636 ( 2020 ). 10.3762/bjoc.16.136 CASPubMedGoogle Scholar Wlodarczyk , K. , Borowski , P. , and Stankevic , M. , Beilstein J. Org. Chem. , 16 , 88 ( 2020 ). 10.3762/bjoc.16.11 CASPubMedGoogle Scholar Daver , H. , Rebek , J. , and Himo , F. , Chem. - Eur. J. , 26 , 10861 ( 2020 ). 10.1002/chem.202001735 CASPubMedWeb of Science®Google Scholar Che , Y. , Wang , R. , Fu , Y. , and Du , Z. Y. , Synlett , 31 , 388 ( 2020 ). 10.1055/s-0037-1610747 CASGoogle Scholar Serusi , L. , Cuccu , F. , Secci , F. , Aitken , D. J. , and Frongia , A. , Synthesis-Stuttgart , 53
Reactions of Aldehydes and Ketones and Their Derivatives
Moloney M.G.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0
Radical Reactions
Parsons A.F., Parsons T.F.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0  |  Abstract
Chapter 13 Radical Reactions A. F. Parsons, A. F. Parsons Department of Chemistry, University of York, Heslington, York, UKSearch for more papers by this authorT. F. Parsons, T. F. Parsons Wyke Sixth Form College, Hull, UKSearch for more papers by this author A. F. Parsons, A. F. Parsons Department of Chemistry, University of York, Heslington, York, UKSearch for more papers by this authorT. F. Parsons, T. F. Parsons Wyke Sixth Form College, Hull, UKSearch for more papers by this author Book Editor(s):Mark Moloney, Mark Moloney University of Oxford, Mansfield Road, Oxford, UK, OX1 3TA United KingdomSearch for more papers by this author First published: 15 March 2024 https://doi.org/10.1002/9781119716846.ch13Book Series:Organic Reaction Mechanisms Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary A review of photocatalytic strategies, involving radical intermediates of importance in organic synthesis, has appeared. The fact that photocatalytic cycles are composed of three steps, namely excitation, quenching, and finally restoration, is highlighted. The review has a particular emphasis on the restoration step, exploring how the deactivated form of the catalyst is converted back into the original state, which permits the cycle to start over again. It classifies photocatalytic processes according to what species is responsible for the restoration step, such as the substrate, an intermediate, or a sacrificial agent. The stereoselective bromoboration of acetylene with boron tribromide is investigated. The mechanism was studied by experiments and calculations, and besides the syn-addition mechanism (proceeding via a four-membered transition state) a radical and polar anti-addition mechanism was postulated. References Capaldo , L. , and Ravelli , D. , Eur. J. Org. Chem. , 2020 , 2783 (2020). 10.1002/ejoc.202000144 Google Scholar Lee , Y. and Kwon , M. S. , Eur. J. Org. Chem. , 2020 , 6028 (2020). 10.1002/ejoc.202000720 Google Scholar Yuan , Y. Q. , Majumder , S. , Yang , M. H. , and Guo , S. R. , Tetrahedron Lett. , 61 , 15106 ( 2020 ). Google Scholar Tang , H. T. , Jia , J. S. , and Pan , Y. M. , Org. Biomol. Chem. , 18 , 5315 ( 2020 ). 10.1039/D0OB01008A CASPubMedWeb of Science®Google Scholar Bartos , P. , Young , V. G. , and Kaszynski , P. , Org. Lett. , 22 , 3835 ( 2020 ). 10.1021/acs.orglett.0c01074 CASPubMedWeb of Science®Google Scholar Feng , A. L. , Yang , Y. Y. , Liu , Y. H. , Geng , C. H. , Zhu , R. X. , and Zhang , D. J. , J. Org. Chem. , 85 , 7207 ( 2020 ). 10.1021/acs.joc.0c00597 CASGoogle Scholar Farshadfar , K. , Gouranourimi , A. , and Ariafard , A. , Org. Biomol. Chem. , 18 , 8103 ( 2020 ). 10.1039/D0OB01705A CASPubMedGoogle Scholar Essiz , S. and Bozkaya , U. , J. Org. Chem. , 85 , 10136 ( 2020 ). 10.1021/acs.joc.0c01472 CASPubMedGoogle Scholar Khartabil , H. , Doudet , L. , Allart-Simon , I. , Ponce-Vargas , M. , Gerard , S. , and Henon , E. , Org. Biomol. Chem. , 18 , 6840 ( 2020 ). 10.1039/D0OB01511C PubMedWeb of Science®Google Scholar Deng , Z. P. and Zhou , D. G. , J. Phys. Org. Chem. , 33 , e4112 ( 2020 ). 10.1002/poc.4112 Google Scholar Zhang , Y. J. and Sun , Y. X. , J. Phys. Org. Chem. , 33 , e4079 ( 2020 ). Google Scholar Patil , M. , Synthesis , 52 , 2883 ( 2020 ). 10.1055/s-0040-1707882 CASGoogle Scholar Noble , B. B. , Nesvadba , P. , and Coote , M. L. , J. Org. Chem. , 85 , 2338 ( 2020 ). 10.1021/acs.joc.9b03052 CASPubMedWeb of Science®Google Scholar Li , R. H. , Zhu , B. , Wang , S. , Geng , Y. , Yan , L. K. , Su , Z. M. , Yao , L. S. , Zhong , R. L. , and Guan , W. , Org. Chem. Front. , 7 , 2168 ( 2020 ). 10.1039/D0QO00458H CASWeb of Science®Google Scholar Gjineci , N. , Aharonovich , S. , Willdorf-Cohen , S. , Dekel , D. R. , and Diesendruck , C. E. , Eur. J. Org. Chem. , 2020 , 3161 ( 2020 ). 10.1002/ejoc.202000435 CASWeb of Science®Google Scholar Korth , H. G. and Mulder , P. , J. Org. Chem. , 85 , 2560 ( 2020 ). 10.1021/acs.joc.9b03286 CASPubMedWeb of Science®Google Scholar Valgimigli , L. , Alfieri , M. L. , Amorati , R. , Baschieri , A. , Crescenzi , O. , Napolitano , A. , and d'Ischia , M. , J. Org. Chem. , 85 , 11440 ( 2020 ). 10.1021/acs.joc.0c01520 CASPubMedWeb of Science®Google Scholar Espiritu , R. , Tan , J. L. , Lim , L. H. , and Arco , S. , J. Phys. Org. Chem. , 33 , e4049 ( 2020 ). 10.1002/poc.4049 Google Scholar Al Aqad , K. M. and Basheer , C. , J. Phys. Org. Chem. , 34 , e4117 ( 2021 ). 10.1002/poc.4117 PubMedGoogle Scholar Zhang , Y. J. , Bing , H. , and Song , R. J. , J. Phys. Org. Chem. , 34 , e4130 ( 2021 ). Google Scholar Simkova , L. and Ludvik , J. , J. Phys. Org. Chem. , 33 , e4046 ( 2020 ). 10.1002/poc.4046 Google Scholar Wang , L. Z. , Zhang , J. , An , X. , and Duan , H. D. , Org. Biomol. Chem. , 18 , 1522 ( 2020 ). 10.1039/C9OB02561H CASPubMedWeb of Science®Google Scholar Zhang , M. S. , Li , B. J. , Chen , H. M. , Lu , H. T. , Ma , H. L. , Cheng , X. Y. , Wang , W. B. , Wang , Y. , Ding , Y. , and Hu , A. G. , J. Org. Chem. , 85 , 9808 ( 2020 ). 10.1021/acs.joc.0c01124 CASPubMedWeb of Science®Google Scholar Jabeen , S. , Farag , M. , Malek , B. , Choudhury , R. , and Greer , A. , J. Org. Chem. , 85 , 12505 ( 2020 ). 10.1021/acs.joc.0c01712 CASPubMedGoogle Scholar Zhao , S. , Jiang , S. , Wang , M. , Cao , C. Y. , and Wan , X. , J. Phys. Org. Chem. , 34 , e4176 ( 2020 ). Google Scholar Wang , S. D. , Zhang , R. B. , and Cadet , J. , Org. Biomol. Chem. , 18 , 3536 ( 2020 ). 10.1039/D0OB00302F CASPubMedGoogle Scholar Zheng , L. W. and Greenberg , M. M. , J. Org. Chem. , 85 , 8665 ( 2020 ). 10.1021/acs.joc.0c01095 CASPubMedWeb of Science®Google Scholar Grabovskii , S. A. , Andriyashina , N. M. , Grabovskaya , Y. S. , Antipin , A. V. , and Kabal'nova , N. N. , J. Phys. Org. Chem. , 33 , e4065 ( 2020 ). 10.1002/poc.4065 Google Scholar Forget , S. M. , Xia , F. , Hein , J. E. , and Brumer , H. , Org. Biomol. Chem. , 18 , 2076 ( 2020 ). 10.1039/C9OB02757B CASGoogle Scholar Walsh , C. T. , Nat. Prod. Rep. , 37 , 100 ( 2020 ). 10.1039/C9NP00015A CASPubMedWeb of Science®Google Scholar Medina , M. E. , Meza-Menchaca , T. , and Trigos , A. , J. Phys. Org. Chem. , 34 , e4167 ( 2021 ). 10.1002/poc.4167 Google Scholar Chevalier , Y. , Ki , Y. L. T. , Herrero , C. , le Nouen , D. , Mahy , J. P. , Goddard , J. P. , and Avenier , F. , Org. Biomol. Chem. , 18 , 4386 ( 2020 ). 10.1039/D0OB00864H CASGoogle Scholar Jin , W. B. , Wu , S. , Xu , Y. F. , Yuan , H. , and Tang , G. L. , Nat. Prod. Rep. , 37 , 17 ( 2020 ). 10.1039/C9NP00032A CASPubMedWeb of Science®Google Scholar Hyster , T. K. , Synlett , 31 , 248 ( 2020 ). 10.1055/s-0037-1611818 CASWeb of Science®Google Scholar Bartolo , N. D. and Woerpel , K. A. , J. Org. Chem. , 85 , 7848 ( 2020 ). 10.1021/acs.joc.0c00481 CASPubMedWeb of Science®Google Scholar Mai-Linde , Y. and Linker , T. , Org. Lett. , 22 , 1525 ( 2020 ). 10.1021/acs.orglett.0c00111 CASPubMedWeb of Science®Google Scholar Zhang , X. T. , Guo , Y. , Dallin , E. , Ma , J. N. , Dai , M. D. , and Phillips , D. L. , J. Org. Chem. , 85 , 11635 ( 2020 ). 10.1021/acs.joc.0c01115 CASGoogle Scholar Ortiz-Escarza , J. M. , Medina , M. E. , and Trigos , A. , J. Phys. Org. Chem. , 34 ( 2021 ). 10.1002/poc.4123 PubMedGoogle Scholar Qiao , J. B. , Zhao , Z. Z. , Zhang , Y. Q. , Yin , K. , Tian , Z. X. , and Shu , X. Z. , Org. Lett. , 22 , 5085 ( 2020 ). 10.1021/acs.orglett.0c01683 CASPubMedWeb of Science®Google Scholar Jiang , X. H. and Tang , P. P. , Org. Lett. , 22 , 5135 ( 2020 ). 10.1021/acs.orglett.0c01741 CASPubMedWeb of Science®Google Scholar Geng , S. S. , Zhang , J. , Chen , S. , Liu , Z. L. , Zeng , X. Q. , He , Y. , and Feng , Z. , Org. Lett. , 22 , 5582 ( 2020 ). 10.1021/acs.orglett.0c01937 CASPubMedWeb of Science®Google Scholar Lim , T. , Ryoo , J. Y. , and Han , M. S. , J. Org. Chem. , 85 , 10966 ( 2020 ). 10.1021/acs.joc.0c01065 CASPubMedWeb of Science®Google Scholar Xia , P. J. , Ye , Z. P. , Hu , Y. Z. , Xiao , J. A. , Chen , K. , Xiang , H. Y. , Chen , X. Q. , and Yang , H. , Org. Lett. , 22 , 1742 ( 2020 ). 10.1021/acs.orglett.0c00020 CASPubMedWeb of Science®Google Scholar Verma , P. K. , Prasad , K. S. , Varghese , D. , and Geetharani , K. , Org. Lett. , 22 , 1431 ( 2020 ). 10.1021/acs.orglett.0c00038 CASPubMedWeb of Science®Google Scholar Shu , C. , Madhavachary , R. , Noble , A. , and Aggarwal , V. K. , Org. Lett. , 22 , 7213 ( 2020 ). 10.1021/acs.orglett.0c02513 CASPubMedWeb of Science®Google Scholar Kawamoto , T. , Oritani , K. , Kawabata , A. , Morioka , T. , Matsubara , H. , and Kamimura , A. , J. Org. Chem. , 85 , 6137 ( 2020 ). 10.1021/acs.joc.0c00105 CASPubMedWeb of Science®Google Scholar Gao , L. Z. , Wang , G. Q. , Chen , H. , Cao , J. , Su , X. S. , Liu , X. T. , Yang , M. , Cheng , X. , and Li , S. H. , Org. Chem. Front. , 7 , 2744 ( 2020 ). 10.1039/D0QO00827C Web of Science®Google Scholar Urvashi , Dar, M. O. , Bharatam , P. V. , Das , P. , Kukreti , S. , and Tandon , V. , Tetrahedron , 76 , 131337 ( 2020 ). 10.1016/j.tet.2020.131337 Google Scholar Golla , S. , Poshala , S. , Pawar , R. , and Kokatla , H. P. , Tetrahedron Lett. , 61 , 151539 ( 2020 ). 10.1016/j.tetlet.2019.151539 Google Scholar Li , P. H. , Wang , Y. Y. , Wang , X. , Wang , Y. , Liu , Y. , Huang , K. K. , Hu , J. , Duan , L. M. , Hu , C. W. , and Liu , J. H. , J. Org. Chem. , 85 , 3101 ( 2020 ). 10.1021/acs.joc.9b02997 CASPubMedWeb of Science®Google Scholar Gawargy , T. A. , Costa , P. , Lanterna , A. E. , and Scaiano , J. C. , Org. Biomol. Chem. , 18 , 6047 ( 2020 ). 10.1039/D0OB01227K PubMedWeb of Science®Google Scholar Chen , X. H. , Wang , Q. M. , Shen , H. M. , Li , G. J. , Yang , Y. F. , and She , Y. B. , Org. Biomol. Chem. , 18 , 346 ( 2020 ). 10.1039/C9OB02415H CASPubMedWeb of Science®Google Scholar Xiang , M. , Zhou , C. , Yang , X. L. , Chen , B. , Tung , C. H. , and Wu , L. Z. , J. Org. Chem. , 85 , 9080 ( 2020 ). 10.1021/acs.joc.0c01000 CASPubMedWeb of Science®Google Scholar Jin , Y. X. , Yang , H. B. , and Wang , C. , Org. Lett. , 22 , 2724 ( 2020 ). 10.1021/acs.orglett.0c00688 CASPubMedWeb of Science®Google Scholar Thatikonda , T. , Deepake , S. K. , Kumar , P. , and Das , U. , Org. Biomol. Chem. , 18 , 4046 ( 2020 ). 10.1039/D0OB00729C CASPubMedWeb of Science®Google Scholar Ubale , A. S. , Chaudhari , M. B. , Shaikh , M. A. , and Gnanaprakasam , B. ,
Addition Reactions: Cycloaddition
Dennis N.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0  |  Abstract
Chapter 10 Addition Reactions: Cycloaddition N. Dennis, N. Dennis Stretton, Queensland, AustraliaSearch for more papers by this author N. Dennis, N. Dennis Stretton, Queensland, AustraliaSearch for more papers by this author Book Editor(s):Mark Moloney, Mark Moloney University of Oxford, Mansfield Road, Oxford, UK, OX1 3TA United KingdomSearch for more papers by this author First published: 15 March 2024 https://doi.org/10.1002/9781119716846.ch10Book Series:Organic Reaction Mechanisms Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary A review describing the synthesis of chiral spirooxindoles with quaternary stereogenic centers via 1,3-dipolar cycloaddition, Diels–Alder, and nucleophilic heterocyclic carbene reactions has been reported. A review of the synthesis of isoxazolines via iminoyl radical-initiated intramolecular cyclization, intermolecular radical addition-initiated cyclization, intramolecular nucleophilic cyclization, [3+2]-cycloaddition, and [2+2+1]-cycloaddition is presented. Molecular electron density theory (MEDT) investigations of the [3+2]-cycloaddition reactions of E-azomethine imines and 2-sulfolene show that the reaction follows a non-concerted two-stage one-step molecular mechanism. MEDT has been used to investigate the Grignard reagent-mediated [3+2]-cycloaddition reaction of phenyl azide with ethynylbenzene in the presence of ethyl magnesium bromide. References Ramirez , M. , Li , W. F. , Lam , Y. H. , Ghosez , L. , and Houk , K. N. , J. Org. Chem. , 85 , 2597 ( 2020 ). 10.1021/acs.joc.9b03340 CASPubMedWeb of Science®Google Scholar Shi , Y. J. , Liu , X. J. , Han , Y. , Yan , P. , Bie , F. S. , and Cao , H. , Tetrahedron Lett. , 61 , 151752 ( 2020 ). Google Scholar McVeigh , M. S. , Kelleghan , A. V. , Yamano , M. M. , Knapp , R. R. , and Garg , N. K. , Org. Lett. , 22 , 4500 ( 2020 ). 10.1021/acs.orglett.0c01510 CASPubMedWeb of Science®Google Scholar Sansinenea , E. , Martinez , E. F. , and Ortiz , A. , Eur. J. Org. Chem. , 2020 , 5101 ( 2020 ). 10.1002/ejoc.202000470 CASWeb of Science®Google Scholar He , J. , Qiu , D. C. , and Li , Y. , Acc. Chem. Res. , 53 , 508 ( 2020 ). 10.1021/acs.accounts.9b00608 CASPubMedWeb of Science®Google Scholar Liao , J. H. , Ouyang , L. , Jin , Q. , Zhang , J. , and Luo , R. S. , Org. Biomol. Chem. , 18 , 4709 ( 2020 ). 10.1039/D0OB00963F CASPubMedWeb of Science®Google Scholar Gallardo-Fuentes , S. , Ormazabal-Toledo , R. , and Fernandez , I. , J. Org. Chem. , 85 , 9272 ( 2020 ). 10.1021/acs.joc.0c01272 CASPubMedWeb of Science®Google Scholar Li , J. H. , An , D. L. , and Qin , J. H. , Synthesis-Stuttgart , 52 , 3818 ( 2020 ). 10.1055/s-0040-1707355 Web of Science®Google Scholar Suri , M. , Hussain , F. L. , Gogoi , C. , Das , P. , and Pahari , P. , Org. Biomol. Chem. , 18 , 2058 ( 2020 ). 10.1039/D0OB00284D CASPubMedWeb of Science®Google Scholar Hu , Z. Y. , Man , Y. , Xu , Z. H. , Wu , T. T. , Xu , X. X. , and Tang , B. , Org. Chem. Front. , 7 , 3720 ( 2020 ). 10.1039/D0QO01095B CASWeb of Science®Google Scholar Peng , H. Y. , Zhang , Y. , Zhu , Y. , and Deng , G. S. , J. Org. Chem. , 85 , 13290 ( 2020 ). 10.1021/acs.joc.0c01711 CASPubMedWeb of Science®Google Scholar Zhang , F. G. , Chen , Z. , Cheung , C. W. , and Ma , J. A. , Chin. J. Chem. , 38 , 1132 ( 2020 ). 10.1002/cjoc.202000270 CASWeb of Science®Google Scholar Demchuk , O. P. , Hryshchuk , O. V. , Vashchenko , B. V. , Kozytskiy , A. V. , Tymtsunik , A. V. , Komarov , I. V. , and Grygorenko , O. O. , J. Org. Chem. , 85 , 5927 ( 2020 ). 10.1021/acs.joc.0c00265 CASPubMedWeb of Science®Google Scholar Aboubakr , H. , Sotiropoulos , J. M. , Brisset , H. , and Raimundo , J. M. , Tetrahedron , 76 , 131384 ( 2020 ). 10.1016/j.tet.2020.131384 Google Scholar Fan , X. , Zhang , P. , Wang , Y. , and Yu , Z. X. , Eur. J. Org. Chem. , 2020 , 5985 ( 2020 ). 10.1002/ejoc.202001007 CASWeb of Science®Google Scholar Pangaribowo , D. A. and Abe , M. , Org. Biomol. Chem. , 18 , 4962 ( 2020 ). 10.1039/D0OB00921K PubMedWeb of Science®Google Scholar Liang , X. F. , Ye , W. J. , Thor , W. , Sun , L. T. , Wang , B. , He , S. Z. , Cheng , Y. K. , and Lee , C. S. , Org. Chem. Front. , 7 , 840 ( 2020 ). 10.1039/D0QO00049C CASWeb of Science®Google Scholar Utecht-Jarzynska , G. , Jasinski , M. , Wurthwein , E. U. , and Reissig , H. U. , Eur. J. Org. Chem. , 2020 , 6740 ( 2020 ). 10.1002/ejoc.202001147 CASWeb of Science®Google Scholar Meyer , D. and El Qacemi , M. , Org. Lett. , 22 , 3479 ( 2020 ). 10.1021/acs.orglett.0c00931 CASPubMedWeb of Science®Google Scholar Jung , S. , Kim , S. Y. , and Yoon , H. J. , Synlett , 31 , 1343 ( 2020 ). 10.1055/s-0040-1707145 CASWeb of Science®Google Scholar Hajra , S. and Biswas , A. , Org. Lett. , 22 , 4990 ( 2020 ). 10.1021/acs.orglett.0c01526 CASPubMedWeb of Science®Google Scholar Han , R. P. , Ding , Y. , Jin , X. K. , and Li , E. Q. , Org. Biomol. Chem. , 18 , 646 ( 2020 ). 10.1039/C9OB02633A CASPubMedWeb of Science®Google Scholar Manneveau , M. , Tanii , S. , Gens , F. , Legros , J. , and Chataigner , I. , Org. Biomol. Chem. , 18 , 3481 ( 2020 ). 10.1039/D0OB00582G CASPubMedWeb of Science®Google Scholar Lin , Y. L. , Lee , Y. T. , Barve , I. J. , Huang , Y. T. , and Sun , C. M. , Org. Chem. Front. , 7 , 2991 ( 2020 ). 10.1039/D0QO00858C CASWeb of Science®Google Scholar Alonso , D. , Hernandez-Castillo , D. , Almagro , L. , Gonzalez-Aleman , R. , Molero , D. , Herranz , M. A. , Medina-Paez , E. , Coro , J. , Martinez-Alvarez , R. , Suarez , M. , and Martin , N. , J. Org. Chem. , 85 , 2426 ( 2020 ). 10.1021/acs.joc.9b03121 CASPubMedWeb of Science®Google Scholar Niu , C. , Chen , X. P. , Yin , Z. C. , Wang , W. F. , and Wang , G. W. , J. Org. Chem. , 85 , 6878 ( 2020 ). 10.1021/acs.joc.9b03436 CASPubMedWeb of Science®Google Scholar Li , Y. F. , Wang , K. , Wang , H. J. , Li , F. B. , Sun , R. , Li , J. X. , Liu , L. , Liu , C. Y. , and Asiri , A. M. , Org. Biomol. Chem. , 18 , 6866 ( 2020 ). 10.1039/D0OB00008F PubMedWeb of Science®Google Scholar Domingo , L. R. , Kula , K. , and Rios-Gutierrez , M. , Eur. J. Org. Chem. , 2020 , 5938 ( 2020 ). 10.1002/ejoc.202000745 CASWeb of Science®Google Scholar Garcia-Minguens , E. , Caletkova , O. , Berkes , D. , Najera , C. , and Sansano , J. M. , Eur. J. Org. Chem. , 2020 , 5563 ( 2020 ). 10.1002/ejoc.202000915 CASWeb of Science®Google Scholar Wu , W. T. , Han , Y. , Sun , J. , and Yan , C. G. , Asian J. Org. Chem. , 9 , 1815 ( 2020 ). 10.1002/ajoc.202000386 CASWeb of Science®Google Scholar Kumaran , S. , Saritha , R. , Gurumurthy , P. , and Parthasarathy , K. , Eur. J. Org. Chem. , 2020 , 2725 ( 2020 ). 10.1002/ejoc.202000247 CASWeb of Science®Google Scholar Furuya , S. , Kanemoto , K. , and Fukuzawa , S. , J. Org. Chem. , 85 , 8142 ( 2020 ). 10.1021/acs.joc.0c01023 CASPubMedWeb of Science®Google Scholar Babazadeh , S. M. and Emamian , S. , J. Phys. Org. Chem. , 33 , e4042 ( 2020 ). 10.1002/poc.4042 CASWeb of Science®Google Scholar Meerakrishna , R. S. , Smile , S. S. , Athira , M. , Choutipalli , V. S. K. , and Shanmugam , P. , New J. Chem. , 44 , 11593 ( 2020 ). 10.1039/D0NJ01684E CASWeb of Science®Google Scholar Motornov , V. A. , Tabolin , A. A. , Nelyubina , Y. V. , Nenajdenko , V. G. , and Ioffe , S. L. , Org. Biomol. Chem. , 18 , 1436 ( 2020 ). 10.1039/C9OB02668A CASPubMedWeb of Science®Google Scholar Moise , I. M. , Ghinet , A. , Shova , S. , and Bicu , E. , Tetrahedron , 76 , 131502 ( 2020 ). 10.1016/j.tet.2020.131502 Google Scholar Zhou , K. , Bao , M. , Huang , J. J. , Kang , Z. H. , Xu , X. F. , Hu , W. H. , and Qian , Y. , Org. Biomol. Chem. , 18 , 409 ( 2020 ). 10.1039/C9OB02571E CASPubMedWeb of Science®Google Scholar Yavari , I. , Ravaghi , P. , Safaei , M. , and Kayanian , J. , Synlett , 31 , 1691 ( 2020 ). 10.1055/s-0040-1706750 CASWeb of Science®Google Scholar Rhyman , L. , Rios-Gutierrez , M. , Domingo , L. R. , and Ramasami , P. , Tetrahedron , 76 , 131458 ( 2020 ). 10.1016/j.tet.2020.131458 Google Scholar Ma , H. , Zeng , J. J. , Tu , D. H. , Mao , W. , Zhao , B. , Wang , K. , Liu , Z. T. , and Lu , J. , Tetrahedron Lett. , 61 , 151593 ( 2020 ). Google Scholar Ling , J. , Mara , D. , Roure , B. , Laugeois , M. , and Vitale , M. R. , J. Org. Chem. , 85 , 3838 ( 2020 ). 10.1021/acs.joc.9b03459 CASPubMedWeb of Science®Google Scholar Matsuzawa , T. , Hosoya , T. , and Yoshida , S. , Chem. Sci. , 11 , 9691 ( 2020 ). 10.1039/D0SC04450D CASPubMedWeb of Science®Google Scholar Li , J. X. , Lin , Z. D. , Wu , W. Q. , and Jiang , H. F. , Org. Chem. Front. , 7 , 2325 ( 2020 ). 10.1039/D0QO00609B CASWeb of Science®Google Scholar Pipim , G. B. , Tia , R. , and Adei , E. , J. Phys. Org. Chem. , 33 , e4174 ( 2021 ). Google Scholar Wang , H. , Cheng , R. , Wang , G. Q. , Shi , Y. , Wang , J. , Guo , H. B. , Trigoura , L. , Xing , Y. L. , and Sun , S. F. , Tetrahedron Lett. , 61 , 151652 ( 2020 ). Google Scholar Bian , Q. L. , Wu , C. L. , Yuan , J. P. , Shi , Z. D. , Ding , T. , Huang , Y. W. , Xu , H. , and Xu , Y. Q. , J. Org. Chem. , 85 , 4058 ( 2020 ). 10.1021/acs.joc.9b03070 CASPubMedWeb of Science®Google Scholar Ledovskaya , M. S. , Voronin , V. V. , Polynski , M. V. , Lebedev , A. N. , and Ananikov , V. P. , Eur. J. Org. Chem. , 2020 , 4571 ( 2020 ). 10.1002/ejoc.202000674 CASWeb of Science®Google Scholar Reddy , G. S. , Kumar , A. S. , and Ramachary , D. B. , Org. Biomol. Chem. , 18 , 4470 ( 2020 ). 10.1039/D0OB00848F Web of Science®Google Scholar Ito , M. , Tanaka , A. , Hatakeyama , K. , Kano , E. , Higuchi , K. , and Sugiyama , S. , Org. Chem. Front. , 7 , 64 ( 2020 ). 10.1039/C9QO01115C CASWeb of Science®Google Scholar Song , Y. , Lee , S. , Dutta , P. , and Ryu , J. S. , Synthesis-Stuttgart , 52 , 744 ( 2020 ). 10.1055/s-0040-1707835 CASWeb of Science®Google Scholar Rodrigues , J. M. , Calhelha , R. C. , Ferreira , I. , and Queiroz , M. , Tetrahedron Lett. , 61 , 151900 ( 2020 ). 10.1016/j.tetlet.2020.151900 Google Scholar Wang , X. X. , Xin , Y. C. , Li , Y. , Xia , W. J. , Zhou , B. , Ye , R. R. , and Li , Y. M. , J. Org. Chem. , 85 , 3576 ( 2020 ). 10.1021/acs.joc.9b03285 CASPubMedWeb of Science®Google Scholar Kim , W. G. , Baek , S. Y. , Jeong , S. Y. , Nam , D. , Jeon , J. H. , Choe , W. , Baik , M. H. , and Hong , S. Y. , Org. Biomol. Chem. , 18 , 3374 ( 2020 ). 10.1039/D0OB00579G CASPubMedWeb of Science®Google Scholar Domingo , L. R. and Acharjee , N. , J. Phys. Org. Chem. , 33 : e4062 ( 2020 ). Google Scholar Batra , N. , Rajendran , V. , Wadi , I. , Lathwal , A. , Dutta , R. K. , Ghosh , P. C. , Gupta , R. D. , and Nath , M. , J. Heterocyclic Chem. , 57 , 1625 ( 2020 ). 10.1002/jhet.3888 CASWeb of Science®Google Scholar Stalsmeden , A. S. , Paterson , A. J. , Szigyarto , I. C. , Thunberg , L. , Johansson , J. R. , Beke-Somfai , T. , and Kann , N. , Org. Biomol. Chem. , 18 , 1957 ( 2020 ). 10.1039/D0OB00168F Web of Science®Google Scholar Xiao , M. Y. , Zheng , M. M. , Peng , X. , Xue , X. S. , Zhang , F. G. , and Ma , J. A. , Org. Lett. , 22 , 7762 ( 2020 ). 10.1021/acs.orglett.0c03025 CASPubMedWeb of Science®Google Scholar Xiao , M. Y. , Chen , Z. , Zhang , F. G. , and Ma , J. A. , Tetrahedron , 76 , 131063 ( 2020 ). Google Scholar Gentile , D. , Floresta , G. , Patamia , V. , Nicosia , A. , Mineo , P. G. G. , and Rescifina , A. , Org. Biomol. Chem. , 18 , 1194 ( 2020 ). 10.1039/C9OB02352F CASPubMedWeb of Science®Google Scholar Esteban , A. , Izquierdo , I. , Garcia , N. , Sexmero , M. J. , Garrido , N. M. , Marcos , I. S. , Sanz , F. , Jambrina , P. G. , Ortega , P. , and Diez , D. , Tetrahedron , 76 , 130764 ( 2020 ). 10.1016/j.tet.2019.130764 Google Scholar More , S. A. , Chao , T. H. , Cheng , M. J. , and Liu , R. S. , Adv. Synth. Catal. , 363 , 525 ( 2021 ) 10.1002/adsc.202001119 Web of Science®Google Scholar Sakla , A. P. , Kansal , P. , and Shankaraiah , N. , Org. Biomol. Chem. , 18 , 8572 ( 2020 ). 10.1039/D0OB01726D CASPubMedWeb of Science®Google Scholar Almehmadi , Y. A. and West , F. G. , Org. Lett. , 22 , 6091 ( 2020 ). 10.1021/acs.orglett.0c02172 CASPubMedWeb of Science®Google Scholar Freeman , J. L. , Li , F. F. , Furkert , D. P. , and Brimble , M. A. , Synlett , 31 , 657 ( 2020 ). 10.1055/s-0039-1691593 CASWeb of Science®Google Scholar Yadav , V. K. , Prasad , D. , Yadav , A. , and Yadav , K. , J. Phys. Org. Chem. , 34 : e4131 ( 2021 ). PubMedGoogle Scholar Wang , Y. C. , Huang , Y. H. , Tsai , H. C. , Basha , R. S. , and Chou , C. M. , Org. Lett. , 22 , 6765 ( 2020 ). 10.1021/acs.orglett.0c02241 CASPubMedWeb of Science®Google Scholar Shi , W. Y. , Mao , B. M. , Xu , J. Q. , Wang , Q. J. , Wang , W. , Wu , Y. J. , Li , X. F. , and Guo , H. C. , Org. Lett. , 22 , 2675 ( 2020 ). 10.1021/acs.orglett.0c00637 CASPubMedWeb of Science®Google Scholar Bastrakov , M. A. , Fedorenko , A. K. , Starosotnikov , A. M. , Fedyanin , I. V. , and Kokorekin , V. A. , Molecules , 25 , 2194 ( 2020 ). 10.3390/molecules25092194 CASGoogle Scholar Tartakoff , S. S. , Enders , A. A. , Zhang , W. Y. , and Hill , A. D. , J. Phys. Org. Chem. , 34 : e 4140 ( 2021 ). 10.1002/poc.4140 CASGoogle Scholar Maier , J. , Deutsch , M. , Merz , J. , Ye , Q. , Diamond , O. , Schilling , M. T. , Friedrich , A. , Engels , B. , and Marder , T. B. , Chem. - Eur. J. , 26 , 15989 ( 2020 ). 10.1002/chem.202002511 CASPubMedWeb of Science®Google Scholar Ma , X. N. , Maier , J. , Wenzel , M. , Friedrich , A. , Steffen , A. , Marder , T. B. , Mitric , R. , and Brixner , T. , Chem. Sci. , 11 , 9198 ( 2020 ). 10.1039/D0SC03184D CASPubMedWeb of Science®Google Scholar Wei , Y. L. , Dauvergne , G. , Rodriguez , J. , and Coquerel , Y. , J. Am. Chem. Soc. , 142 , 16921 ( 2020 ). 10.1021/jacs.0c08218 CASPubMedWeb of Science®Google Scholar Adachi , K. , Hirose , S. , Ueda , Y. , Uekusa , H. , and Hamura , T. , Chem. - Eur. J. , 27 , 3665 ( 2021 ). 10.1002/chem.202004510 CASPubMedWeb of Science®Google Scholar Kurpanik , A. , Matussek , M. , Szafraniec-Gorol , G. , Filapek , M. , Lodowski , P. , Marcol-Szumilas , B. , Ignasiak , W. , Malecki , J. G. , Machura , B. , Malecka , M. , Danikiewicz , W. , Pawlus , S. , and Krompiec , S. , Chem. - Eur. J. , 26 , 12150 ( 2020 ). 10.1002/chem.202001327 CASPubMedWeb of Science®Google Scholar Onyango , E. O. , Mannes , P. Z. , Pletnev , A. , Granger , D. B. , Ai , Q. X. , Risko , C. , Anthony , J. E. , and Gribble , G. W. , Tetrahedron Lett. , 61 , 152182 ( 2020 ). 10.1016/j.tetlet.2020.152182 Google Scholar Takikawa , H. , Nishii , A. , Takiguchi , H. , Yagishita , H. , Tanaka , M. , Hirano , K. , Uchiyama , M. , Ohmori , K. , and Suzuki , K. , Angew. Chem., Int. Ed. , 59 , 12440 ( 2020 ). 10.1002/anie.202003131 CASPubMedWeb of Science®Google Scholar Minami , Y. , Furuya , Y. , and Hiyama , T. , Chem. - Eur. J. , 26 , 9471 ( 2020 ). 10.1002/chem.202001119 CASPubMedWeb of Science®Google Scholar Zhang , Y. L. , Guo , R. T. , Luo , H. , Liang , X. S. , and Wang , X. C. , Org. Lett. , 22 , 5627 ( 2020 ). 10.1021/acs.orglett.0c01992 CASPubMedWeb of Science®Google Scholar Zhang , X. Y. , Zhang , S. Q. , Li , Q. , Xiao , F. , Yue , Z. W. , Hong , X. , and Lei , X. G. , Org. Lett. , 22 , 2920 ( 2020 ). 10.1021/acs.orglett.0c00578 CASWeb of Science®Google Scholar Goricke , F. , Haseloff , S. , Laue , M. , Schneider , M. , Brumme , T. , and Schneider , C. , J. Org. Chem. , 85 , 11699 ( 2020 ). 10.1021/acs.joc.0c01375 PubMedWeb of Science®Google Scholar Huang , H. M. , Wu , X. Y. , Leng , B. R. , Zhu , Y. L. , Meng , X. C. , Hong , Y. , Jiang , B. , and Wang , D. C. , Org. Chem. Front. , 7 , 414 ( 2020 ). 10.1039/C9QO01343A CASWeb of Science®Google Scholar Lei , L. , Yao , Y. Y. , Jiang , L. J. , Lu , X. Q. , Liang , C. , and Mo , D. L. , J. Org. Chem. , 85 , 3059 ( 2020 ). 10.1021/acs.joc.9b02953 CASPubMedWeb of Science®Google Scholar Ye , Y. , Du , L. , Zhang , X. W. , Newmister , S. A. , McCauley , M. , Alegre-Requena , J. V. , Zhang , W. , Mu , S. , Minami , A. , Fraley , A. E. , Adrover-Castellano , M. L. , Carney , N. A. , Shende , V. V. , Qi , F. F. , Oikawa , H. , Kato , H. , Tsukamoto , S. , Paton , R. S. , Williams , R. M. , Sherman , D. H. , and Li , S. Y. , Nature Catalysis , 3 , 497 ( 2020 ). 10.1038/s41929-020-0454-9 CASPubMedWeb of Science®Google Scholar He , C. Q. , Lam , C. C. , Yu , P. Y. , Song , Z. H. , Chen , M. , Lam , Y. H. , Chen , S. M. , and Houk , K. N. , J. Org. Chem. , 85 , 2618 ( 2020 ). 10.1021/acs.joc.9b03446 CASPubMedWeb of Science®Google Scholar Wang , D. G. , Yu , H. B. , Sun , S. H. , and Zhong , F. R. , Org. Lett. , 22 , 2425 ( 2020 ). 10.1021/acs.orglett.0c00624 CASPubMedWeb of Science®Google Scholar Bartko , S. G. , Hamzik , P. J. , Espindola , L. , Gomez , C. , and Danheiser , R. L. , J. Org. Chem. , 85 , 548 ( 2020 ). 10.1021/acs.joc.9b02628 CASPubMedWeb of Science®Google Scholar Ghorai , S. , Lin , Y. J. , Xia , Y. Z. , Wink , D. J. , and Lee , D. , Org. Lett. , 22 , 626 ( 2020 ). 10.1021/acs.orglett.9b04395 CASPubMedWeb of Science®Google Scholar Jadhav , P. D. , Chen , J. X. , and Liu , R. S. , ACS Catal. , 10 , 5840 ( 2020 ). 10.1021/acscatal.0c01293 CASWeb of Science®Google Scholar Wu , J. , Winiarz , P. , Patel , D. , de Jong , J. , Tong , D. , Chidley , T. , Vemula , N. , and Pagenkopf , B. L. , Org. Lett. , 22 , 3140 ( 2020 ). 10.1021/acs.orglett.0c00896 CASPubMedWeb of Science®Google Scholar He , S. L. , Gu , H. C. , He , Y. P. , and Yang , X. Y. , Org. Lett. , 22 , 5633 ( 2020 ). 10.1021/acs.orglett.0c01994 CASPubMedWeb of Science®Google Scholar Duan , L. C. , Wang , X. , Gu , Y. C. , Hou , Y. L. , and Gong , P. , Org. Chem. Front. , 7 , 2307 ( 2020 ). 10.1039/D0QO00555J CASWeb of Science®Google Scholar Pospelov , E. V. , Golovanov , I. S. , Ioffe , S. L. , and Sukhorukov , A. Y. , Molecules , 25 , 3613 ( 2020 ). 10.3390/molecules25163613 CASPubMedWeb of Science®Google Scholar Huang , J. M. , Liu , W. L. , Wang , C. Q. , Yang , L. , and Cao , X. H. , Tetrahedron Lett. , 61 , 151417 ( 2020 ). Google Scholar Geng , X. , Wang , C. , Huang , C. , Bao , Y. , Zhao , P. , Zhou , Y. , Wu , Y. D. , Feng , L. L. , and Feng , A. X. , Org. Lett. , 22 , 140 ( 2020 ). 10.1021/acs.orglett.9b04060 CASPubMedWeb of Science®Google Scholar Provis-Evans , C. B. , Lau , S. , Krewald , V. , and Webster , R. L. , ACS Catal. , 10 , 10157 ( 2020 ). 10.1021/acscatal.0c03068 CASWeb of Science®Google Scholar Iwata , T. , Yoshinaga , T. , and Shindo , M. , Synlett , 31 , 1903 ( 2020 ). 10.1055/s-0040-1706417 CASWeb of Science®Google Scholar Hosokawa , T. , Asada , T. , and Kamikawa , K. , J. Phys. Chem. A , 124 , 652 ( 2020 ). 10.1021/acs.jpca.9b09533 CASPubMedWeb of Science®Google Scholar Yamamoto , Y. , Eur. J. Org. Chem. , 2020 , 7455 ( 2020 ). 10.1002/ejoc.202001349 CASWeb of Science®Google Scholar Mendez-Galvez , C. , Bohme , M. , Leino , R. , and Savela , R. , Eur. J. Org. Chem. , 2020 , 1708 ( 2020 ). 10.1002/ejoc.202000046 CASWeb of Science®Google Scholar Chen , Y. , Wu , Y. J. , Shatskiy , A. , Kan , Y. H. , Karkas , M. D. , Liu , J. Q. , and Wang , X. S. , Eur. J. Org. Chem. , 2020 , 3475 ( 2020 ). 10.1002/ejoc.202000437 CASWeb of Science®Google Scholar Yan , J. , Song , Z. X. , Zhao , C. T. , Shi , K. X. , Yang , L. M. , and Zhong , G. F. , Org. Lett. , 22 , 3329 ( 2020 ). 10.1021/acs.orglett.0c00699 CASPubMedWeb of Science®Google Scholar Ji , D. S. , Luo , Y. C. , Hu , X. Q. , and Xu , P. F. , Org. Lett. , 22 , 1028 ( 2020 ). 10.1021/acs.orglett.9b04571 CASPubMedWeb of Science®Google Scholar Dong , K. Y. , Xu , X. F. , and Doyle , M. P. , Org. Chem. Front. , 7 , 1653 ( 2020 ). 10.1039/D0QO00539H CASWeb of Science®Google Scholar Luo , Y. , Chen , C. H. , Zhu , F. , and Mo , D. L. , Org. Biomol. Chem. , 18 , 8209 ( 2020 ). 10.1039/D0OB01788D CASPubMedWeb of Science®Google Scholar Zuo , H. H. , Qin , J. Y. , Zhang , W. T. , Bashir , M. A. , Yu , Q. L. , Zhao , W. N. , Wu , G. J. , and Zhong , F. R. , Org. Lett. , 22 , 6911 ( 2020 ). 10.1021/acs.orglett.0c02442 CASPubMedWeb of Science®Google Scholar Buddensiek , D. , Mloston , G. , Matczak , P. , and Voss , J. , J. Phys. Org. Chem. , 34 : e 4170 ( 2021 ). 10.1002/poc.4170 Google Scholar Choi , S. , Oh , H. , Sim , J. , Yu , E. , Shin , S. , and Park , C. M. , Org. Lett. , 22 , 5528 ( 2020 ). 10.1021/acs.orglett.0c01896 CASPubMedWeb of Science®Google Scholar Kommagalla , Y. , Ando , S. , and Chatani , N. , Org. Lett. , 22 , 1375 ( 2020 ). 10.1021/acs.orglett.9b04664 CASPubMedWeb of Science®Google Scholar Wei , C. , Zhang , J. Q. , Zhang , J. J. , Liang , C. , and Mo , D. L. , Org. Chem. Front. , 7 , 1520 ( 2020 ). 10.1039/D0QO00224K CASWeb of Science®Google Scholar Tucker , Z. D. , Hill , H. M. , Smith , A. L. , and Ashfeld , B. L. , Org. Lett. , 22 , 6605 ( 2020 ). 10.1021/acs.orglett.0c02374 CASPubMedWeb of Science®Google Scholar Raj , A. S. K. and Liu , R. S. , Adv. Synth. Catal. , 362 , 2517 ( 2020 ). 10.1002/adsc.202000292 Web of Science®Google Scholar Amoah , A. , Tia , R. , and Adei , E. , Tetrahedron , 76 , 131422 ( 2020 ). 10.1016/j.tet.2020.131422 Google Scholar Farley , C. M. , Sasakura , K. , Zhou , Y. Y. , Kanale , V. V. , and Uyeda , C. , J. Am. Chem. Soc. , 142 , 4598 ( 2020 ). 10.1021/jacs.0c00356 CASPubMedWeb of Science®Google Scholar Kaldas , S. J. , Kran , E. , Muck-Lichtenfeld , C. , Yudin , A. K. , and Studer , A. , Chem. - Eur. J. , 26 , 1501 ( 2020 ). 10.1002/chem.201904727 CASPubMedWeb of Science®Google Scholar Li , M. M. , Xiong , Q. , Qu , B. L. , Xiao , Y. Q. , Lan , Y. , Lu , L. Q. , and Xiao , W. J. , Angew. Chem., Int. Ed. , 59 , 17429 ( 2020 ). 10.1002/anie.202006366 CASPubMedWeb of Science®Google Scholar Xia , C. , Wang , D. C. , Qu , G. R. , and Guo , H. M. , Org. Chem. Front. , 7 , 1474 ( 2020 ). 10.1039/D0QO00128G CASWeb of Science®Google Scholar Organic Reaction Mechanisms 2020 ReferencesRelatedInformation
Ligand‐Promoted Catalyzed Reactions
Bosque I., Gonzalez‐Gomez J.C.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0
Carbocations
Moreira V.M.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0  |  Abstract
Chapter 5 Carbocations V. M. Moreira, V. M. Moreira Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Portugal Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, PortugalSearch for more papers by this author V. M. Moreira, V. M. Moreira Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Portugal Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, PortugalSearch for more papers by this author Book Editor(s):Mark Moloney, Mark Moloney University of Oxford, Mansfield Road, Oxford, UK, OX1 3TA United KingdomSearch for more papers by this author First published: 15 March 2024 https://doi.org/10.1002/9781119716846.ch5Book Series:Organic Reaction Mechanisms Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary A density-functional theory study of the reaction of butadiene with the allyl cation, in the gas phase and dimethyl sulfoxide, has brought to focus the fact that the widths of pathways to competing products in a reaction may be more relevant for determining the selectivity than barrier heights. The intermediacy of carbocations in studies including zeolites continued to be a topic of interest. The reactivity of the benzyl carbocation with benzene as a weak base was studied by quantitative infrared spectroscopy. The interconversion of cyclopropylcarbinyl and cyclobutyl cations is revisited using the concept of conformational landscape. The observation of the model hydrogen migration in carbocations using molecular dynamics calculations suggested that hydrogen migration velocity decreases with stronger electrostatic interactions between the hydrogen and neighbouring groups (drag concept) and that this property may be exploited for rationalizing previous experimental results and designing novel reactions. References Frontier , A. J. and Hernandez , J. J. , Acc. Chem. Res. , 53 , 1822 ( 2020 ). 10.1021/acs.accounts.0c00284 CASPubMedWeb of Science®Google Scholar Tsuji , H. and Kawatsura , M. , Asian J. Org. Chem. , 9 , 1924 ( 2020 ). 10.1002/ajoc.202000422 CASWeb of Science®Google Scholar Song , X. R. , Yang , R. C. , and Xiao , Q. , Adv. Synth. Catal. , 363 , 852 ( 2020 ). 10.1002/adsc.202001142 Google Scholar Popov , S. , Shao , B. , Bagdasarian , A. L. , Wigman , B. , and Nelson , H. M. , Synlett , 31 , 1851 ( 2020 ). 10.1055/s-0040-1707908 CASGoogle Scholar Liu , C. , Zeng , H. , Zhu , C. L. , and Jiang , H. F. , Chem. Commun. , 56 , 10442 ( 2020 ). 10.1039/D0CC04318D CASPubMedWeb of Science®Google Scholar Bleriot , Y. , Synthesis-Stuttgart , 53 , 904 ( 2021 ). 10.1055/s-0040-1706073 CASGoogle Scholar Ramsden , C. A. , Arkivoc , 1 ( 2020 ). Google Scholar Lee , S. and Goodman , J. M. , J. Am. Chem. Soc. , 142 , 9210 ( 2020 ). 10.1021/jacs.9b13449 CASPubMedWeb of Science®Google Scholar Bai , M. N. , Feng , Z. T. , Li , J. , and Tantillo , D. J. , Chem. Sci. , 11 , 9937 ( 2020 ). 10.1039/D0SC04036C CASPubMedWeb of Science®Google Scholar Roytman , V. A. and Singleton , D. A. , J. Am. Chem. Soc. , 142 , 12865 ( 2020 ). 10.1021/jacs.0c06295 CASPubMedWeb of Science®Google Scholar Ishizuka , S. , Matsugi , A. , Hama , T. , and Enami , S. , J. Phys. Chem. Lett. , 11 , 67 ( 2020 ). 10.1021/acs.jpclett.9b03110 CASPubMedWeb of Science®Google Scholar Wiberg , K. B. and Rablen , P. R. , J. Org. Chem. , 85 , 11741 ( 2020 ). 10.1021/acs.joc.0c01469 CASPubMedGoogle Scholar Spencer , T. A. and Ditchfield , R. , Org. Biomol. Chem. , 18 , 7597 ( 2020 ). 10.1039/D0OB01565B CASPubMedGoogle Scholar Bejaunieks , R. , Purins , M. , and Turks , M. , Synthesis-Stuttgart , 52 , 2147 ( 2020 ). 10.1055/s-0039-1690898 Google Scholar Sharafi , M. , Campbell , J. P. , Murphy , K. E. , Brown , R. O. , and Schneebeli , S. T. , Synlett. , 32 , 229 ( 2021 ). 10.1055/s-0040-1707296 CASWeb of Science®Google Scholar Rosenbach , N. and Mota , C. J. A. , Arkivoc , 102 ( 2020 ). Google Scholar Ren , Q. H. , Rybicki , M. , and Sauer , J. , J. Phys. Chem. C. , 124 , 10067 ( 2020 ). 10.1021/acs.jpcc.0c03061 CASWeb of Science®Google Scholar Gee , J. C. , J. Phys. Org. Chem. , 34 , e4172 ( 2020 ). 10.1002/poc.4172 Google Scholar Wang , C. , Hu , M. , Chu , Y. Y. , Zhou , X. , Wang , Q. , Qi , G. D. , Li , S. H. , Xu , J. , and Deng , F. , Angew. Chem., Int. Ed. , 59 , 7198 ( 2020 ). 10.1002/anie.202000637 CASPubMedWeb of Science®Google Scholar Rey , J. , Bignaud , C. , Raybaud , P. , Bucko , T. , and Chizallet , C. , Angew. Chem., Int. Ed. , 59 , 18938 ( 2020 ). 10.1002/anie.202006065 CASPubMedWeb of Science®Google Scholar Hernandez , E. D. and Jentoft , F. C. , ACS Catal. , 10 , 5764 ( 2020 ). 10.1021/acscatal.0c00721 CASWeb of Science®Google Scholar DeLuca , M. , Janes , C. , and Hibbitts , D. , ACS Catal. , 10 , 4593 ( 2020 ). 10.1021/acscatal.9b04529 CASWeb of Science®Google Scholar Tejeda-Serrano , M. , Sanz-Navarro , S. , Blake , F. , and Leyva-Perez , A. , Synthesis-Stuttgart , 52 , 2031 ( 2020 ). 10.1055/s-0039-1690896 CASGoogle Scholar Allen , M. C. , Liu , T. W. , Webber , M. S. , Hibbitts , D. , Schwartz , T. J. , and Hoffman , A. J. , ACS Catal. , 10 , 6771 ( 2020 ). 10.1021/acscatal.0c01328 CASWeb of Science®Google Scholar Puerta-Oteo , R. , Munarriz , J. , Polo , V. , Jimenez , M. V. , and Perez-Torrente , J. J. , ACS Catal. , 10 , 7367 ( 2020 ). 10.1021/acscatal.0c01582 CASWeb of Science®Google Scholar Long , P. W. , He , T. , and Oestreich , M. , Org. Lett. , 22 , 7383 ( 2020 ). 10.1021/acs.orglett.0c02751 CASPubMedWeb of Science®Google Scholar Guo , R. , Qi , X. T. , Xiang , H. Y. , Geaneotes , P. , Wang , R. H. , Liu , P. , and Wang , Y. M. , Angew. Chem., Int. Ed. , 59 , 16651 ( 2020 ). 10.1002/anie.202006278 CASPubMedWeb of Science®Google Scholar Fan , X. , Zhang , P. , Wang , Y. , and Yu , Z. X. , Eur. J. Org. Chem. , 2020 , 5985 ( 2020 ). 10.1002/ejoc.202001007 CASWeb of Science®Google Scholar Hensinger , M. J. , Dodge , N. J. , and Brewer , M. , Org. Lett. , 22 , 497 ( 2020 ). 10.1021/acs.orglett.9b04255 CASPubMedWeb of Science®Google Scholar Gicquiaud , J. , Abadie , B. , Dhara , K. , Berlande , M. , Hermange , P. , Sotiropoulos , J. M. , and Toullec , P. Y. , Chem. - Eur. J. , 26 , 16266 ( 2020 ). 10.1002/chem.202003783 CASPubMedWeb of Science®Google Scholar Li , Z. L. , Gandon , V. , and Bour , C. , Chem. Commun. , 56 , 11892 ( 2020 ). 10.1039/D0CC90414G CASPubMedGoogle Scholar Li , Z. L. , Gandon , V. , and Bour , C. , Chem. Commun. , 56 , 6507 ( 2020 ). 10.1039/D0CC02300K CASPubMedWeb of Science®Google Scholar Zheng , H. F. , Dong , K. Y. , Wherritt , D. , Arman , H. , and Doyle , M. P. , Angew. Chem., Int. Ed. , 59 , 13613 ( 2020 ). 10.1002/anie.202004328 CASPubMedWeb of Science®Google Scholar Ahrens , A. , Schwarz , J. , Lustosa , D. M. , Pourkaveh , R. , Hoffmann , M. , Rominger , F. , Rudolph , M. , Dreuw , A. , and Hashmi , A. S. K. , Chem. - Eur. J. , 26 , 5280 ( 2020 ). 10.1002/chem.202000338 CASPubMedWeb of Science®Google Scholar Yamada , T. , Park , K. , Tachikawa , T. , Fujii , A. , Rudolph , M. , Hashmi , A. S. K. , and Sajiki , H. , Org. Lett. , 22 , 1883 ( 2020 ). 10.1021/acs.orglett.0c00221 CASPubMedWeb of Science®Google Scholar Zhang , H. , Zhan , X. Y. , Dong , Y. , Yang , J. , He , S. , Shi , Z. C. , Zhang , X. M. , and Wang , J. Y. , RSC Adv. , 10 , 16942 ( 2020 ). 10.1039/D0RA02912B CASPubMedWeb of Science®Google Scholar Aota , Y. , Doko , Y. , Kano , T. , and Maruoka , K. , Eur. J. Org. Chem. , 2020 , 1907 ( 2020 ). 10.1002/ejoc.202000169 CASGoogle Scholar Pirovano , V. , Brambilla , E. , Moretti , A. , Rizzato , S. , Abbiati , G. , Nava , D. , and Rossi , E. , J. Org. Chem. , 85 , 3265 ( 2020 ). 10.1021/acs.joc.9b03117 CASPubMedWeb of Science®Google Scholar Declas , N. and Waser , J. , Angew. Chem., Int. Ed. , 59 , 18256 ( 2020 ). 10.1002/anie.202006707 CASPubMedWeb of Science®Google Scholar Corbin , J. R. , Ketelboeter , D. R. , Fernandez , I. , and Schomaker , J. M. , J. Am. Chem. Soc. , 142 , 5568 ( 2020 ). 10.1021/jacs.0c02441 CASPubMedWeb of Science®Google Scholar Ma , R. Y. and Gung , B. W. , Tetrahedron , 76 , 130840 ( 2020 ). Google Scholar Kang , Z. H. , Shou , J. Y. , Xing , D. , and Hu , W. H. , J. Org. Chem. , 85 , 9850 ( 2020 ). 10.1021/acs.joc.0c01162 CASPubMedWeb of Science®Google Scholar Liu , X. Y. , Zou , Y. X. , Ni , H. L. , Zhang , J. , Dong , H. B. , and Chen , L. , Org. Chem. Front. , 7 , 980 ( 2020 ). 10.1039/D0QO00159G CASWeb of Science®Google Scholar Stoyanov , E. S. and Stoyanova , I. V. , ChemistrySelect , 5 , 9277 ( 2020 ). 10.1002/slct.202001852 CASWeb of Science®Google Scholar Wen , X. J. , Li , X. Y. , Luo , X. , Wang , W. J. , Song , S. , and Jiao , N. , Chem. Sci. , 11 , 4482 ( 2020 ). 10.1039/C9SC05522C CASPubMedWeb of Science®Google Scholar Hou , Z. W. , Liu , D. J. , Xiong , P. , Lai , X. L. , Song , J. S. , and Xu , H. C. , Angew. Chem., Int. Ed. , 60 , 2943 ( 2021 ). 10.1002/anie.202013478 CASPubMedWeb of Science®Google Scholar Roy , A. , Bonetti , V. , Wang , G. Q. , Wu , Q. , Klare , H. F. T. , and Oestreich , M. , Org. Lett. , 22 , 1213 ( 2020 ). 10.1021/acs.orglett.0c00173 CASPubMedWeb of Science®Google Scholar Wang , Y. Y. and Su , P. F. , ACS Omega , 5 , 21862 ( 2020 ). 10.1021/acsomega.0c03000 CASPubMedWeb of Science®Google Scholar Oda , R. and Nakata , K. , Eur. J. Org. Chem. , 2021 , 295 ( 2021 ). 10.1002/ejoc.202001320 CASWeb of Science®Google Scholar Kurouchi , H. , Chem. Commun. , 56 , 8313 ( 2020 ). 10.1039/D0CC01969K CASPubMedGoogle Scholar Bei , Z. W. , Huang , Y. , Chen , Y. W. , Cao , Y. P. , and Li , J. , Chem. Sci. , 11 , 6026 ( 2020 ). 10.1039/D0SC00505C CASPubMedWeb of Science®Google Scholar Olaru , M. , Duvinage , D. , Nass , Y. , Malaspina , L. A. , Mebs , S. , and Beckmann , J. , Angew. Chem., Int. Ed. , 59 , 14414 ( 2020 ). 10.1002/anie.202006728 CASPubMedWeb of Science®Google Scholar Navakouski , M. J. , Zhylitskaya , H. , Chmielewski , P. J. , Zyla-Karwowska , M. , and Stepien , M. , J. Org. Chem. , 85 , 187 ( 2020 ). 10.1021/acs.joc.9b02556 CASPubMedWeb of Science®Google Scholar Solorzano , P. C. , Baumgartner , M. T. , Puiatti , M. , and Jimenez , L. B. , RSC Adv. , 10 , 21974 ( 2020 ). 10.1039/D0RA04213G PubMedWeb of Science®Google Scholar Xu , S. Y. , Holst , H. M. , McGuire , S. B. , and Race , N. J. , J. Am. Chem. Soc. , 142 , 8090 ( 2020 ). 10.1021/jacs.0c02095 CASPubMedWeb of Science®Google Scholar Liao , M. H. , Zhang , M. , Hu , D. H. , Zhang , R. H. , Zhao , Y. , Liu , S. S. , Li , Y. X. , Xiao , W. L. , and Tang , E. , Org. Biomol. Chem. , 18 , 4034 ( 2020 ). 10.1039/D0OB00257G CASPubMedWeb of Science®Google Scholar Xu , J. X. , Gao , Y. , Li , Z. J. , Liu , J. J. , Guo , T. F. , Zhang , L. , Wang , H. X. , Zhang , Z. H. , and Guo , K. , Eur. J. Org. Chem. , 2020 , 311 ( 2020 ). 10.1002/ejoc.201901537 CASWeb of Science®Google Scholar Jacovella , U. , Scholz , M. S. , and Bieske , E. J. , J. Phys. Chem. Lett. , 11 , 8867 ( 2020 ). 10.1021/acs.jpclett.0c02430 CASPubMedWeb of Science®Google Scholar Kreuzahler , M. and Haberhauer , G. , Angew. Chem., Int. Ed. , 59 , 9433 ( 2020 ). 10.1002/anie.201916027 CASPubMedWeb of Science®Google Scholar Delayre , B. , Piemontesi , C. , Wang , Q. , and Zhu , J. P. , Angew. Chem., Int. Ed. , 59 , 13990 ( 2020 ). 10.1002/anie.202005380 CASPubMedWeb of Science®Google Scholar Pospelov , E. V. , Golovanov , I. S. , Ioffe , S. L. , and Sukhorukov , A. Y. , Molecules , 25 , 3613 ( 2020 ). 10.3390/molecules25163613 CASPubMedWeb of Science®Google Scholar He , T. , Wang , G. Q. , Bonetti , V. , Klare , H. F. T. , and Oestreich , M. , Angew. Chem., Int. Ed. , 59 , 12186 ( 2020 ). 10.1002/anie.202004320 CASPubMedWeb of Science®Google Scholar Fernandes , A. , Laye , C. , Pramanik , S. , Palmeira , D. , Pekel , O. O. , Massip , S. , Schmidtmann , M. , Muller , T. , Robert , F. , and Landais , Y. , J. Am. Chem. Soc. , 142 , 564 ( 2020 ). 10.1021/jacs.9b11704 CASPubMedWeb of Science®Google Scholar Kikuchi , J. , Takano , K. , Ota , Y. , Umemiya , S. , and Terada , M. , Chem. - Eur. J. , 26 , 11124 ( 2020 ). 10.1002/chem.202001609 CASPubMedWeb of Science®Google Scholar Wang , J. , Deng , Y. J. , Yan , X. X. , Liu , Y. J. , Ge , C. P. , Yan , Y. H. , Chao , S. J. , and Zhou , P. X. , Org. Chem. Front. , 7 , 715 ( 2020 ). 10.1039/C9QO01502G CASWeb of Science®Google Scholar Nees , S. , Kupfer , T. , Hofmann , A. , and Braunschweig , H. , Angew. Chem., Int. Ed. , 59 , 18809 ( 2020 ). 10.1002/anie.202009644 CASPubMedWeb of Science®Google Scholar Holl , M. G. , Pitts , C. R. , and Lectka , T. , Acc. Chem. Res. , 53 , 265 ( 2020 ). 10.1021/acs.accounts.9b00554 CASPubMedGoogle Scholar Mandal , D. , Stein , F. , Chandra , S. , Neuman , N. I. , Sarkar , P. , Das , S. , Kundu , A. , Sarkar , A. , Rawat , H. , Pati , S. K. , Chandrasekhar , V. , Sarkar , B. , and Jana , A. , Chem. Commun. , 56 , 8233 ( 2020 ). 10.1039/D0CC02807J CASPubMedWeb of Science®Google Scholar Rupf , S. M. , Prohm , P. , and Malischewski , M. , Chem. Commun. , 56 , 9834 ( 2020 ). 10.1039/D0CC04226A CASPubMedWeb of Science®Google Scholar Artault , M. , Mokhtari , N. , Cantin , T. , Martin-Mingot , A. , and Thibaudeau , S. , Chem. Commun. , 56 , 5905 ( 2020 ). 10.1039/D0CC02081H CASPubMedWeb of Science®Google Scholar Bhuma , N. , Lebedel , L. , Yamashita , H. , Shimizu , Y. , Abada , Z. , Arda , A. , Desire , J. , Michelet , B. , Martin-Mingot , A. , Abou-Hassan , A. , Takumi , M. , Marrot , J. , Jimenez-Barbero , J. , Nagaki , A. , Bleriot , Y. , and Thibaudeau , S. , Angew. Chem., Int. Ed. , 60 , 2036 ( 2021 ). 10.1002/anie.202010175 CASPubMedWeb of Science®Google Scholar Marianski , M. , Mucha , E. , Greis , K. , Moon , S. , Pardo , A. , Kirschbaum , C. , Thomas , D. A. , Meijer , G. , von Helden , G. , Gilmore , K. , Seeberger , P. H. , and Pagel , K. , Angew. Chem., Int. Ed. , 59 , 6166 ( 2020 ). 10.1002/anie.201916245 CASPubMedWeb of Science®Google Scholar Li , B. , Wolper , C. , Haberhauer , G. , and Schulz , S. , Angew. Chem., Int. Ed. , 60 , 1986 ( 2021 ). 10.1002/anie.202012595 CASPubMedWeb of Science®Google Scholar Kreuzahler , M. and Haberhauer , G. , Angew. Chem., Int. Ed. , 59 , 17739 ( 2020 ). 10.1002/anie.202006245 CASPubMedWeb of Science®Google Scholar Lee , V. Y. , Ito , Y. , Gapurenko , O. A. , Minyaev , R. M. , Gornitzka , H. , and Sekiguchi , A. , J. Am. Chem. Soc. , 142 , 16455 ( 2020 ). 10.1021/jacs.0c08052 CASPubMedWeb of Science®Google Scholar Karimi , M. , Borthakur , R. , Dorsey , C. L. , Chen , C. H. , Lajeune , S. , and Gabbai , F. P. , J. Am. Chem. Soc. , 142 , 13651 ( 2020 ). 10.1021/jacs.0c04841 CASPubMedWeb of Science®Google Scholar Khoroshilova , O. V. and Vasilyev , A. V. , J. Org. Chem. , 85 , 5872 ( 2020 ). 10.1021/acs.joc.0c00170 CASPubMedWeb of Science®Google Scholar Sakhaee , N. , Sakhaee , S. , Mobaraki , A. , and Takallou , A. , Chem. Phys. Lett. , 747 ( 2020 ). 10.1016/j.cplett.2020.137369 Google Scholar Creary , X. , J. Org. Chem. , 85 , 7086 ( 2020 ). 10.1021/acs.joc.0c00472 CASPubMedWeb of Science®Google Scholar Bauer , A. , Di Mauro , G. , Li , J. , and Maulide , N. , Angew. Chem., Int. Ed. , 59 , 18208 ( 2020 ). 10.1002/anie.202007439 CASPubMedWeb of Science®Google Scholar Hari , D. P. , Abell , J. C. , Fasano , V. , and Aggarwal , V. K. , J. Am. Chem. Soc. , 142 , 5515 ( 2020 ). 10.1021/jacs.0c00813 CASPubMedWeb of Science®Google Scholar Xing , Y. Y. , Chen , S. S. , Chen , D. Z. , and Tantillo , D. J. , Phys. Chem. Chem. Phys. , 22 , 26955 ( 2020 ). 10.1039/D0CP05000H CASPubMedGoogle Scholar Zhang , M. , Yan , S. , Liang , Y. , Zheng , M. J. , Wu , Z. D. , Zang , Y. , Yu , M. Y. , Sun , W. G. , Liu , J. J. , Ye , Y. , Wang , J. P. , Chen , C. M. , Zhu , H. C. , and Zhang , Y. H. , Org. Chem. Front. , 7 , 3486 ( 2020 ). 10.1039/D0QO00960A CASWeb of Science®Google Scholar Tkachenko , I. M. , Mankova , P. A. , Rybakov , V. B. , Golovin , E. V. , and Klimochkin , Y. N. , Org. Biomol. Chem. , 18 , 465 ( 2020 ). 10.1039/C9OB02060H CASPubMedWeb of Science®Google Scholar Sharma , H. A. , Mennie , K. M. , Kwan , E. E. , and Jacobsen , E. N. , J. Am. Chem. Soc. , 142 , 16090 ( 2020 ). 10.1021/jacs.0c08150 CASPubMedWeb of Science®Google Scholar Shobe , D. S. , J. Phys. Org. Chem. , 33 ( 2020 ). 10.1002/poc.4064 Google Scholar Aida , Y. , Shibata , Y. , and Tanaka , K. , Chem. - Eur. J. , 26 , 3004 ( 2020 ). 10.1002/chem.201905519 CASPubMedWeb of Science®Google Scholar Kotha , S. and Cheekatla , S. R. , Org. Biomol. Chem. , 18 , 1377 ( 2020 ). 10.1039/C9OB02298H CASPubMedWeb of Science®Google Scholar Han , Y. , Xue , Z. B. , Li , G. W. , Gu , Y. W. , Ni , Y. , Dong , S. Q. , and Chi , C. Y. , Angew. Chem., Int. Ed. , 59 , 9026 ( 2020 ). 10.1002/anie.201915327 CASPubMedWeb of Science®Google Scholar Purins , M. , Kumpins , V. , Skomorokhov , M. , Mishnev , A. , and Turks , M. , Tetrahedron Lett. , 61 , 151405 ( 2020 ). 10.1016/j.tetlet.2019.151405 Google Scholar Zonker , B. , Duman , E. , Hausmann , H. , Becker , J. , and Hrdina , R. , Org. Biomol. Chem. , 18 , 4941 ( 2020 ). 10.1039/D0OB01156H CASPubMedGoogle Scholar Diao , H. J. , Chen , N. H. , Wang , K. , Zhang , F. , Wang , Y. H. , and Wu , R. B. , ACS Catal. , 10 , 2157 ( 2020 ). 10.1021/acscatal.9b05221 CASWeb of Science®Google Scholar Veena , K. S. , Gopalan , G. , Madhukrishnan , M. , Varughese , S. , Radhakrishnan , K. V. , and Lankalapalli , R. S. , Org. Lett. , 22 , 6409 ( 2020 ). 10.1021/acs.orglett.0c02220 CASPubMedWeb of Science®Google Scholar Hayes , C. J. , Palframan , M. J. , and Pattenden , G. , J. Org. Chem. , 85 , 4507 ( 2020 ). 10.1021/acs.joc.0c00369 CASPubMedGoogle Scholar Sato , H. , Yamazaki , M. , and Uchiyama , M. , Chem. Pharm. Bull. , 68 , 487 ( 2020 ). 10.1248/cpb.c20-00037 CASPubMedWeb of Science®Google Scholar Sim , D. C. M. , Hungerford , N. L. , Krenske , E. H. , Pierens , G. K. , Andrews , K. T. , Skinner-Adams , T. S. , and Garson , M. J. , Aust. J. Chem. , 73 , 129 ( 2020 ). 10.1071/CH19227 CASWeb of Science®Google Scholar Lin , F. L. , Lauterbach , L. , Zou , J. , Wang , Y. H. , Lv , J. M. , Chen , G. D. , Hu , D. , Gao , H. , Yao , X. S. , and Dickschat , J. S. , ACS Catal. , 10 , 4306 ( 2020 ). 10.1021/acscatal.0c00377 CASWeb of Science®Google Scholar Organic Reaction Mechanisms 2020 ReferencesRelatedInformation
Addition Reactions: Polar Addition
Kočovský P.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0
Index
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0
Nucleophilic Aliphatic Substitution 2020
Moloney J.G., Moloney M.G.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0
4a Nucleophilic Aromatic Substitution
Crampton M.R.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 1
Reactions of Carboxylic, Phosphoric, and Sulfonic Acids and Their Derivatives
Bedford C.T.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0  |  Abstract
Chapter 2 Reactions of Carboxylic, Phosphoric, and Sulfonic Acids and Their Derivatives C. T. Bedford, C. T. Bedford Department of Chemistry, University College London, London, UKSearch for more papers by this author C. T. Bedford, C. T. Bedford Department of Chemistry, University College London, London, UKSearch for more papers by this author Book Editor(s):Mark Moloney, Mark Moloney University of Oxford, Mansfield Road, Oxford, UK, OX1 3TA United KingdomSearch for more papers by this author First published: 15 March 2024 https://doi.org/10.1002/9781119716846.ch2Book Series:Organic Reaction Mechanisms Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Access to both stereoisomers of P-stereogenic phosphonothioates is provided by the chemoselective- and stereoselective alcoholysis of bi-2-naphthyl phosphonothioates. An internal nucleophilic catalyst-mediated cyclization for the synthesis of medium-sized lactones and lactams can be illustrated by the conversion in 90% yield of a bicyclic 9-hydroxyacid (30) into the 10-membered lactone (33) in CHCl3 at r.t. (Scheme 11). Activation of the carboxylic acid grouping of (30) by propanephosphonic acid anhydride (T3P) and diisopropylethylamine prompts the attack of it by the strategically located pyridine to form the N-acylium ion (31) which facilitates attack at C=O by the OH group to generate a TI (32), collapse of which forms the 10-membered lactone (33). References Allcock , H. R. and Walsh , E. J. , J. Am. Chem. Soc. , 94 , 4538 ( 1972 ). 10.1021/ja00768a021 CASWeb of Science®Google Scholar Movahed , F. S. , Sawant , D. N. , Bagal , D. B. , and Saito , S. , Synthesis-Stuttgart , 52 , 3253 ( 2020 ). 10.1055/s-0040-1707174 CASWeb of Science®Google Scholar Lai , M. , Wu , Z. , Su , F. , Yu , Y. , Jing , Y. , Kong , J. , Wang , Z. , Wang , S. , and Zhao , M. , Eur. J. Org. Chem. , 198 ( 2020 ). 10.1002/ejoc.201901630 Web of Science®Google Scholar Zhang , Q. , Cui , X. , Feng , T. , Zhang , Y. , Zhang , X. , and He , J. , Mol. Catal. , 484 , 110785 ( 2020 ). Google Scholar Kuwabara , K. , Maekawa , Y. , Minoura , M. , Maruyama , T. , and Murai , T. , J. Org. Chem. , 85 , 14446 ( 2020 ). 10.1021/acs.joc.0c00687 CASPubMedWeb of Science®Google Scholar Rapp , P. B. , Murai , K. , Ichiishi , N. , Leahy , D. K. , and Miller , S. J. , Org. Lett. , 22 , 168 ( 2020 ). 10.1021/acs.orglett.9b04119 CASPubMedWeb of Science®Google Scholar Szeler , K. , Williams , N. H. , Hengge , A. C. , and Kamerlin , S. C. L. , J. Org. Chem. , 85 , 6489 ( 2020 ). 10.1021/acs.joc.0c00441 CASPubMedWeb of Science®Google Scholar Lawer , A. , Rossi-Ashton , J. A. , Stephens , T. C. , Challis , B. J. , Epton , R. G. , Lynam , J. M. , and Unsworth , W. P. , Angew. Chem. Int. Ed. , 58 , 13942 ( 2019 ). 10.1002/anie.201907206 CASPubMedWeb of Science®Google Scholar Lawer , A. , Epton , R. G. , Stephens , T. C. , Palate , K. Y. , Lodi , M. , Marotte , E. , Lamb , K. J. , Sangha , J. K. , Lynam , J. M. , and Unsworth , W. P. , Chem. Eur. J. , 26 , 12674 ( 2020 ). 10.1002/chem.202002164 CASPubMedWeb of Science®Google Scholar Clarke , A. K. and Unsworth , W. P. , Chem. Sci. , 11 , 2876 ( 2020 ). 10.1039/D0SC00568A CASPubMedWeb of Science®Google Scholar Stephens , T. C. and Unsworth , W. P. , Synlett , 31 , 133 ( 2020 ). 10.1055/s-0037-1611500 CASWeb of Science®Google Scholar Zhao , Y. , Steiger , A. K. , and Pluth , M. D. , Chem. Commun. , 54 , 4951 ( 2018 ). 10.1039/C8CC02428F CASPubMedWeb of Science®Google Scholar Gilbert , A. K. , Zhao , Y. , Otteson , C. E. , and Pluth , M. D. , J. Org. Chem. , 84 , 14469 ( 2019 ). 10.1021/acs.joc.9b01873 CASPubMedWeb of Science®Google Scholar Zhou , S. C. , Mou , Y. J. , Liu , M. , Du , Q. , Ali , B. , Ramprasad , J. , Qiao , C. H. , Hu , L. F. , and Ji , X. Y. , J. Org. Chem. , 85 , 8352 ( 2020 ). 10.1021/acs.joc.0c00559 CASPubMedWeb of Science®Google Scholar Cerda , M. M. , Mancuso , J. L. , Mullen , E. J. , Hendon , C. H. , and Pluth , M. D. , Chem. Eur. J. , 26 , 5374 ( 2019 ). 10.1002/chem.201905577 Web of Science®Google Scholar Powell , C. R. , Foster , J. C. , Okyere , B. , Theus , M. H. , and Matson , J. B. , J. Am. Chem. Soc. , 138 , 13477 ( 2016 ). 10.1021/jacs.6b07204 CASPubMedWeb of Science®Google Scholar Powell , C. R. , Dillon , K. M. , and Matson , J. B. , Biochem. Pharmacol. ,. 149 , 110 ( 2018 ). 10.1016/j.bcp.2017.11.014 CASPubMedWeb of Science®Google Scholar Levinn , C. M. , Cerda , M.M. , and Pluth , M. D. , Acc. Chem. Res. , 52 , 2723 ( 2019 ). 10.1021/acs.accounts.9b00315 CASPubMedWeb of Science®Google Scholar Xu , S. , Hamsath , A. , Neill , D. L. , Wang , Y. , and Xian , M. , Chem. Eur. J. , 25 , 4005 ( 2019 ). 10.1002/chem.201804895 CASPubMedWeb of Science®Google Scholar Bora , P. , Chauhan , P. , Pardeshi , K. A. , and Chakrapani , H. , RSC Adv. , 8 , 27359 ( 2018 ). 10.1039/C8RA03658F CASPubMedWeb of Science®Google Scholar Shigenaga , A. , Chem. Pharm. Bull. , 67 , 1171 ( 2019 ). 10.1248/cpb.c19-00285 PubMedWeb of Science®Google Scholar Otaka , A. , Sato , K. , and Shigenaga , A. , Top. Curr. Chem. , 363 , 33 ( 2015 ). 10.1007/128_2014_586 CASPubMedWeb of Science®Google Scholar Shigenaga , A. , Org. Biomol. Chem. , 18 , 9706 ( 2020 ). 10.1039/D0OB01968B CASPubMedWeb of Science®Google Scholar Hutton , C. A. , Shang , J. , and Wille , U. , Chem. Eur. J. , 22 , 3163 ( 2016 ). 10.1002/chem.201503753 CASPubMedWeb of Science®Google Scholar Shang , J. , Thombare , V. J. , Charron , C. L. , Wille , U. , and Hutton , C. A. , Chem. Eur. J. , 27 , 1620 ( 2020 ). 10.1002/chem.202005035 PubMedWeb of Science®Google Scholar Foden , C. S. , Islam , S. , Fernandez-Garcia , C. , Maugeri , L. , Sheppard , T. D. , and Powner , M. W. , Science , 370 , 865 ( 2020 ). 10.1126/science.abd5680 CASPubMedWeb of Science®Google Scholar Canavelli , P. , Islam , S. , and Powner , M. W. , Nature , 571 , 546 ( 2019 ). 10.1038/s41586-019-1371-4 CASPubMedWeb of Science®Google Scholar Organic Reaction Mechanisms 2020 ReferencesRelatedInformation
Carbanions and Electrophilic Aliphatic Substitution
Birsa M.L.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0  |  Abstract
Chapter 7 Carbanions and Electrophilic Aliphatic Substitution M. L. Birsa, M. L. Birsa Faculty of Chemistry, "Al. I. Cuza" University of Iasi, Iasi, RomaniaSearch for more papers by this author M. L. Birsa, M. L. Birsa Faculty of Chemistry, "Al. I. Cuza" University of Iasi, Iasi, RomaniaSearch for more papers by this author Book Editor(s):Mark Moloney, Mark Moloney University of Oxford, Mansfield Road, Oxford, UK, OX1 3TA United KingdomSearch for more papers by this author First published: 15 March 2024 https://doi.org/10.1002/9781119716846.ch7Book Series:Organic Reaction Mechanisms Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Structure, reactivity, and synthetic applications of sodium diisopropylamide in enolization and orthometallation reactions are reviewed. The transfer of the electrophilic fragment from cumene hydroperoxide to the Zr(IV)-bound enolate has been accompanied by a heterolytic O—O bond cleavage. The formation of a hydrogen bond between the amine hydrogen atom(s) of the salen ligand and the hydroxy group of cumene hydroperoxide played a significant role in stabilizing the stereocontrolled transition state and improving the enantioselectivity. C-Alkylation of potassium enolates with styrenes (CAKES) is one of the highlighted reactions. Base-catalyzed amide CAKES have been studied using a synergistic approach of computation and experimental kinetic studies. The Schlenk equilibrium for thiophene Grignard reagents has been studied using quantum chemical reaction discovery tools. A detailed surface reaction mechanism of zinc-promoted silylation of phenylacetylene and chlorosilane has been reported based on combined experimental characterizations and periodic DFT calculations. References Woltornist , R. A. , Ma , Y. , Algera , R. F. , Zhou , Y. H. , Zhang , Z. R. , and Collum , D. B. , Synthesis-Stuttgart , 52 , 1478 ( 2020 ). 10.1055/s-0039-1690846 CASPubMedWeb of Science®Google Scholar Mao , S. N. , Chen , K. J. , Yan , G. B. , and Huang , D. Y. , Eur. J. Org. Chem. , 525 ( 2020 ). 10.1002/ejoc.201901605 Web of Science®Google Scholar Hao , Y. J. , Hu , X. S. , Zhou , Y. , Zhou , J. , and Yu , J. S. , ACS Catal. , 10 , 955 ( 2020 ). 10.1021/acscatal.9b04480 CASWeb of Science®Google Scholar Mandigma , M. J. P. , Domanski , M. , and Barham , J. P. , Org. Biomol. Chem. , 18 , 7697 ( 2020 ). 10.1039/D0OB01180K CASPubMedWeb of Science®Google Scholar Barham , J. P. , Fouquet , T. N. J. , and Norikane , Y. , Org. Biomol. Chem. , 18 , 2063 ( 2020 ). 10.1039/C9OB02495F CASPubMedWeb of Science®Google Scholar Liu , F. R. , Zhu , L. , Zhang , T. , Zhong , K. B. , Xiong , Q. , Shen , B. M. , Liu , S. H. , Lan , Y. , and Bai , R. P. , ACS Catal. , 10 , 1256 ( 2020 ). 10.1021/acscatal.9b02040 CASWeb of Science®Google Scholar Chen , J. , Gu , H. Y. , Zhu , X. Y. , Nam , W. , and Wang , B. , Adv. Synth. Catal. , 362 , 2976 ( 2020 ). 10.1002/adsc.202000290 CASWeb of Science®Google Scholar Lozovskiy , S. V. and Vasilyev , A. V. , Adv. Synth. Catal. , 362 , 3121 ( 2020 ). 10.1002/adsc.202000534 CASWeb of Science®Google Scholar Curtis , E. R. , Hannigan , M. D. , Vitek , A. K. , and Zimmerman , P. M. , J. Phys. Chem. A , 124 , 1480 ( 2020 ). 10.1021/acs.jpca.9b09985 CASPubMedWeb of Science®Google Scholar Lauridsen , J. M. V. , Cho , S. Y. , Bae , H. Y. , and Lee , J. W. , Organometallics , 39 , 1652 ( 2020 ). 10.1021/acs.organomet.9b00838 Web of Science®Google Scholar Lim , S. , Cho , H. , Jeong , J. , Jang , M. , Kim , H. , Cho , S. H. , and Lee , E. , Org. Lett. , 22 , 7387 ( 2020 ). 10.1021/acs.orglett.0c02752 CASPubMedWeb of Science®Google Scholar Wang , W. F. , Lu , K. , Qin , Y. , Yao , W. W. , Yuan , D. D. , Pullarkat , S. A. , Xu , L. , and Ma , M. T. , Tetrahedron , 76 , 131145 ( 2020 ). 10.1016/j.tet.2020.131145 CASWeb of Science®Google Scholar Huang , P. , Liu , Z. , Shao , Y. Q. , Deng , S. F. , and Liu , B. P. , Phys. Chem. Chem. Phys. , 22 , 22935 ( 2020 ). 10.1039/D0CP04127K CASPubMedWeb of Science®Google Scholar Hartmann , P. E. , Lazzarotto , M. , Pletz , J. , Tanda , S. , Neu , P. , Goessler , W. , Kroutil , W. , Boese , A. D. , and Fuchs , M. , J. Org. Chem. , 85 , 9672 ( 2020 ). 10.1021/acs.joc.0c00992 CASPubMedWeb of Science®Google Scholar Nouch , R. , Woodward , S. , Willcox , D. , Robinson , D. , and Lewis , W. , Organometallics , 39 , 834 ( 2020 ). 10.1021/acs.organomet.0c00005 CASWeb of Science®Google Scholar Zeng , X. M. , Synlett , 31 , 205 ( 2020 ). 10.1055/s-0039-1690764 CASWeb of Science®Google Scholar Konik , Y. A. and Kananovich , D. G. , Tetrahedron Lett. , 61 , 152036 ( 2020 ). 10.1016/j.tetlet.2020.152036 Google Scholar Zambron , B. K. , Synthesis-Stuttgart , 52 , 1147 ( 2020 ). 10.1055/s-0039-1690817 CASWeb of Science®Google Scholar Greene , M. A. , Liu , Y. D. , Sanzone , J. R. , and Woerpel , K. A. , Org. Lett. , 22 , 7518 ( 2020 ). 10.1021/acs.orglett.0c02711 CASPubMedWeb of Science®Google Scholar Zhang , Y. X. , Chen , Y. R. , Zhang , Z. G. , Liu , S. S. , and Shen , X. , Org. Lett. , 22 , 970 ( 2020 ). 10.1021/acs.orglett.9b04505 CASPubMedWeb of Science®Google Scholar Auth , T. , Koszinowski , K. , and O'Hair , R. A. J. , Organometallics , 39 , 25 ( 2020 ). 10.1021/acs.organomet.9b00521 CASWeb of Science®Google Scholar Vijayan , A. , Rao , D. N. , Radhakrishnan , K. V. , Lam , P. Y. S. , and Das , P. , Synthesis-Stuttgart , 53 , 805 ( 2021 ). 10.1055/s-0040-1705971 CASWeb of Science®Google Scholar Pineschi , M. , Eur. J. Org. Chem. , 2643 ( 2020 ). 10.1002/ejoc.201901853 Web of Science®Google Scholar Obst , M. F. , Gevorgyan , A. , Bayer , A. , and Hopmann , K. H. , Organometallics , 39 , 1545 ( 2020 ). 10.1021/acs.organomet.9b00710 CASWeb of Science®Google Scholar Daley , R. A. and Topczewski , J. J. , Synthesis-Stuttgart , 52 , 365 ( 2020 ). 10.1055/s-0039-1690769 CASWeb of Science®Google Scholar Becica , J. and Leitch , D. C. , Synlett , 32 , 641 ( 2021 ). 10.1055/a-1306-3228 CASWeb of Science®Google Scholar Orlandi , M. and Licini , G. , J. Org. Chem. , 85 , 11511 ( 2020 ). 10.1021/acs.joc.0c01768 CASPubMedWeb of Science®Google Scholar Tcyrulnikov , S. and Kozlowski , M. C. , J. Org. Chem. , 85 , 3465 ( 2020 ). 10.1021/acs.joc.9b03203 CASPubMedWeb of Science®Google Scholar Guo , T. , Ding , Y. L. , Zhou , L. L. , Xu , H. Y. , Loh , T. P. , and Wu , X. J. , ACS Catal. , 10 , 7262 ( 2020 ). 10.1021/acscatal.0c02414 CASWeb of Science®Google Scholar Zhao , B. , Shang , R. , Wang , G. Z. , Wang , S. H. , Chen , H. , and Fu , Y. , ACS Catal. , 10 , 1334 ( 2020 ). 10.1021/acscatal.9b04699 CASWeb of Science®Google Scholar Chen , Q. W. , Wu , S. F. , Yan , S. Q. , Li , C. X. , Abduhulam , H. , Shi , Y. H. , Dang , Y. F. , and Cao , C. S. , ACS Catal. , 10 , 8168 ( 2020 ). 10.1021/acscatal.0c01462 CASWeb of Science®Google Scholar Patel , P. and Rousseaux , S. A. L. , Synlett , 31 , 492 ( 2020 ). 10.1055/s-0039-1690718 CASWeb of Science®Google Scholar Lucas , E. L. , Hewitt , K. A. , Chen , P. P. , Castro , A. J. , Hong , X. , and Jarvo , E. R. , J. Org. Chem. , 85 , 1775 ( 2020 ). 10.1021/acs.joc.9b02603 CASPubMedWeb of Science®Google Scholar Chen , W. K. , Li , J. , Xie , H. , and Wang , J. , Org. Lett. , 22 , 3586 ( 2020 ). 10.1021/acs.orglett.0c01052 CASPubMedWeb of Science®Google Scholar Hang , W. , Yi , Y. P. , and Xi , C. J. , Adv. Synth. Catal. , 362 , 2337 ( 2020 ). 10.1002/adsc.202000301 CASWeb of Science®Google Scholar Agata , R. , Lu , S. M. , Matsuda , H. , Isozaki , K. , and Nakamura , M. , Org. Biomol. Chem. , 18 , 3022 ( 2020 ). 10.1039/D0OB00357C CASPubMedWeb of Science®Google Scholar Delaude , L. , Adv. Synth. Catal. , 362 , 3259 ( 2020 ). 10.1002/adsc.202000639 CASWeb of Science®Google Scholar Budagumpi , S. , Keri , R. S. , Achar , G. , and Brinda , K. N. , Adv. Synth. Catal. , 362 , 970 ( 2020 ). 10.1002/adsc.201900859 CASWeb of Science®Google Scholar Das , K. K. , Paul , S. , and Panda , S. , Org. Biomol. Chem. , 18 , 8939 ( 2020 ). 10.1039/D0OB01721C CASPubMedWeb of Science®Google Scholar Zhang , Z. , Ye , J. H. , Ju , T. , Liao , L. L. , Huang , H. , Gui , Y. Y. , Zhou , W. J. , and Yu , D. G. , ACS Catal. , 10 , 10871 ( 2020 ). 10.1021/acscatal.0c03127 CASWeb of Science®Google Scholar Moon , P. J. and Lundgren , R. J. , ACS Catal. , 10 , 1742 ( 2020 ). 10.1021/acscatal.9b04956 CASWeb of Science®Google Scholar Oller , J. , Saez , D. A. , and Vohringer-Martinez , E. , J. Phys. Chem. A , 124 , 849 ( 2020 ). 10.1021/acs.jpca.9b07012 CASPubMedWeb of Science®Google Scholar Li , F. Y. , Zhang , J. Z. , and Xia , F. , J. Phys. Chem. A , 124 , 2029 ( 2020 ). 10.1021/acs.jpca.9b11991 CASPubMedGoogle Scholar Sun , Z. C. and Cundari , T. R. , Phys. Chem. Chem. Phys. , 22 , 24320 ( 2020 ). 10.1039/D0CP04080K CASPubMedWeb of Science®Google Scholar Khedkar , A. and Roemelt , M. , Phys. Chem. Chem. Phys. , 22 , 17677 ( 2020 ). 10.1039/D0CP02834G CASPubMedWeb of Science®Google Scholar Alburquerque , P. R. , Ramachandran , B. R. , Junk , T. , and Karsili , T. N. V. , J. Phys. Chem. A , 124 , 2530 ( 2020 ). 10.1021/acs.jpca.9b10892 CASPubMedWeb of Science®Google Scholar Voronin , V. V. , Ledovskaya , M. S. , Rodygin , K. S. , and Ananikov , V. P. , Org. Chem. Front. , 7 , 1334 ( 2020 ). 10.1039/D0QO00202J CASWeb of Science®Google Scholar Zhu , C. J. , Kuniyil , R. , Jei , B. B. , and Ackermann , L. , ACS Catal. , 10 , 4444 ( 2020 ). 10.1021/acscatal.9b05413 CASWeb of Science®Google Scholar Stockhammer , L. , Schorgenhumer , J. , Mairhofer , C. , and Waser , M. , Eur. J. Org. Chem. , 82 ( 2021 ). Google Scholar Chen , M. Y. , Pannecoucke , X. , Jubault , P. , and Besset , T. , Org. Lett. , 22 , 7556 ( 2020 ). 10.1021/acs.orglett.0c02750 CASPubMedWeb of Science®Google Scholar Organic Reaction Mechanisms 2020 ReferencesRelatedInformation
Elimination Reactions
Birsa M.L.
Wiley
Organic Reaction Mechanisms 2024 citations by CoLab: 0  |  Abstract
Chapter 8 Elimination Reactions M. L. Birsa, M. L. Birsa Faculty of Chemistry, "Al. I. Cuza" University of Iasi, Iasi, RomaniaSearch for more papers by this author M. L. Birsa, M. L. Birsa Faculty of Chemistry, "Al. I. Cuza" University of Iasi, Iasi, RomaniaSearch for more papers by this author Book Editor(s):Mark Moloney, Mark Moloney University of Oxford, Mansfield Road, Oxford, UK, OX1 3TA United KingdomSearch for more papers by this author First published: 15 March 2024 https://doi.org/10.1002/9781119716846.ch8Book Series:Organic Reaction Mechanisms Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary A unified framework for understanding nucleophilicity and protophilicity in the S N 2/E2 competition is described. The first palladium-N-heterocyclic carbene catalyzed Suzuki cross-coupling of aryl sulfoxides with phenylboronic acids is established. Density functional theory calculations have indicated that the reaction occurred through oxidative addition, transmetalation, and reductive elimination to provide the final coupling product. The synthesis of various functionalized alkynes from non-alkyne sources is overviewed in terms of its scope, limitations, and recent developments, especially elimination reactions. The mechanism of the photoreaction of azidomethyl methyl sulfide is investigated by a combined approach using low-temperature matrix isolation FTIR spectroscopy in conjunction with two theoretical methods. Lewis acid-assisted palladium-catalyzed dealkoxylation of N-alkoxyamides has been developed. The reaction proceeded with various N-alkoxyamides including a sulfonamide and a phosphoramide, in the absence of an external reductant. References Vermeeren , P. , Hansen , T. , Jansen , P. , Swart , M. , Hamlin , T. A. , and Bickelhaupt , F. M. , Chem. – Eur. J. , 26 , 15538 ( 2020 ). 10.1002/chem.202003831 CASPubMedWeb of Science®Google Scholar Rhyman , L. , Rios-Gutierrez , M. , Domingo , L. R. , and Ramasami , P. , Tetrahedron , 76 , 131458 ( 2020 ). 10.1016/j.tet.2020.131458 Google Scholar Koyanagi , T. , Siena , P. M. , Przybyla , D. E. , Rafie , M. I. , and Nagorski , R. W. , J. Org. Chem. , 85 , 1115 ( 2020 ). 10.1021/acs.joc.9b02812 CASPubMedWeb of Science®Google Scholar Reyno , R. S. , Sugunan , A. , Ranganayakulu , S. , Suresh , C. H. , and Rajendar , G. , Org. Lett. , 22 , 1040 ( 2020 ). 10.1021/acs.orglett.9b04531 CASPubMedWeb of Science®Google Scholar Zhang , Y. J. , Tang , Y. Z. , and He , B. , RSC Adv. , 10 , 24308 ( 2020 ). 10.1039/C9RA10511E CASPubMedWeb of Science®Google Scholar Zhang , Y. J. , Bing , H. , and Song , R. J. , J. Phys. Org. Chem. , e4130 ( 2020 ). Google Scholar Chen , Q. W. , Wu , S. F. , Yan , S. Q. , Li , C. X. , Abduhulam , H. , Shi , Y. H. , Dang , Y. F. , and Cao , C. S. , ACS Catal. , 10 , 8168 ( 2020 ). 10.1021/acscatal.0c01462 CASWeb of Science®Google Scholar Poutrel , P. , Pannecoucke , X. , Jubault , P. , and Poisson , T. , Org. Lett. , 22 , 4858 ( 2020 ). 10.1021/acs.orglett.0c01701 CASPubMedWeb of Science®Google Scholar Gao , P. , Gao , L. Z. , Xi , L. L. , Zhang , Z. D. , Li , S. H. , and Shi , Z. Z. , Org. Chem. Front. , 7 , 2618 ( 2020 ). 10.1039/D0QO00773K CASWeb of Science®Google Scholar Yang , Z. , Moller , M. , and Koenigs , R. M. , Angew. Chem. Int. Ed. , 59 , 5572 ( 2020 ). 10.1002/anie.201915500 CASPubMedWeb of Science®Google Scholar Yang , Z. , Pei , C. , and Koenigs , R. M. , Org. Lett. , 22 , 7234 ( 2020 ). 10.1021/acs.orglett.0c02568 CASPubMedWeb of Science®Google Scholar Panda , M. , Mondal , M. , Chen , S. , Ibrahim , A. A. , Twardy , D. J. , and Kerrigan , N. J. , Eur. J. Org. Chem. , 5752 , ( 2020 ). 10.1002/ejoc.202000976 Web of Science®Google Scholar Arava , S. , Santra , S. K. , Pathe , G. K. , Kapanaiah , R. , and Szpilman , A. M. , Angew. Chem. Int. Ed. , 59 , 15171 ( 2020 ). 10.1002/anie.202005286 CASPubMedWeb of Science®Google Scholar Patel , P. and Rousseaux , S. A. L. , Synlett , 31 , 492 ( 2020 ). 10.1055/s-0039-1690718 CASWeb of Science®Google Scholar Bismuto , A. , Delcaillau , T. , Muller , P. , and Morandi , B. , ACS Catal. , 10 , 4630 ( 2020 ). 10.1021/acscatal.0c00393 CASWeb of Science®Google Scholar Zhao , R. , Zeng , B. L. , Jia , W. Q. , Zhao , H. Y. , Shen , L. Y. , Wang , X. J. , and Pan , X. D. , RSC Adv. , 10 , 34938 ( 2020 ). 10.1039/D0RA07170F CASPubMedWeb of Science®Google Scholar Hota , P. K. , Maji , S. , Ahmed , J. , Rajendran , N. M. , and Mandal , S. K. , Chem. Commun. (Cambridge, U. K.) , 56 , 575 ( 2020 ). 10.1039/C9CC08413D CASPubMedWeb of Science®Google Scholar Roy , T. and Lee , J. W. , Synlett , 31 , 455 ( 2020 ). 10.1055/s-0039-1690991 CASWeb of Science®Google Scholar Vuong , H. , Stentzel , M. R. , and Klumpp , D. A. , Tetrahedron Lett. , 61 , 151630 ( 2020 ). 10.1016/j.tetlet.2020.151630 PubMedGoogle Scholar Shaw , R. , Elagamy , A. , Althagafi , I. , and Pratap , R. , Org. Biomol. Chem. , 18 , 3797 ( 2020 ). 10.1039/D0OB00325E CASPubMedWeb of Science®Google Scholar Pietrasiak , E. and Lee , E. , Synlett , 31 , 1349 ( 2020 ). 10.1055/s-0040-1707106 CASWeb of Science®Google Scholar Zhang , C. S. , Lu , Y. , Zhao , R. H. , Chen , X. Y. , and Wang , Z. X. , Org. Chem. Front. , 7 , 3411 ( 2020 ). 10.1039/D0QO00903B CASWeb of Science®Google Scholar Yu , G. F. , Wang , P. , Bao , X. G. , and Wang , Y. , Asian J. Org. Chem. , 9 , 793 ( 2020 ). 10.1002/ajoc.202000110 CASWeb of Science®Google Scholar Orlandi , M. and Licini , G. , J. Org. Chem. , 85 , 11511 ( 2020 ). 10.1021/acs.joc.0c01768 CASPubMedWeb of Science®Google Scholar Ma , X. X. , Zhao , X. , Zhu , R. X. , and Zhang , D. J. , J. Org. Chem. , 85 , 5995 ( 2020 ). 10.1021/acs.joc.0c00424 CASPubMedWeb of Science®Google Scholar Liu , J. , Nie , W. , Yu , H. Z. , and Shi , J. , Org. Biomol. Chem. , 18 , 9065 ( 2020 ). 10.1039/D0OB01414A CASPubMedWeb of Science®Google Scholar Yao , Y. , Zhang , X. , and Ma , S. M. , Org. Chem. Front. , 7 , 2047 ( 2020 ). 10.1039/D0QO00564A CASWeb of Science®Google Scholar Byers , P. , Doyle , P. , and Augusta , A. , J. Phys. Org. Chem. , e4056 ( 2020 ). Google Scholar Godara , S. , Radhakrishnan , A. , and Paranjothy , M. , J. Phys. Chem. A , 124 , 6438 ( 2020 ). 10.1021/acs.jpca.0c04366 CASPubMedWeb of Science®Google Scholar Algarra , M. , Soto , J. , da Silva , L. P. , Pino-Gonzalez , M. S. , Rodriguez-Borges , J. E. , Mascetti , J. , Borget , F. , Reisi-Vanani , A. , and Luque , R. , J. Phys. Chem. A , 124 , 1911 ( 2020 ). 10.1021/acs.jpca.9b11157 CASPubMedWeb of Science®Google Scholar Wang , Y. , Qu , L. B. , Wei , D. H. , and Lan , Y. , J. Org. Chem. , 85 , 8437 ( 2020 ). 10.1021/acs.joc.0c00769 CASPubMedWeb of Science®Google Scholar Genoux , A. , Gonzalez , J. A. , Merino , E. , and Nevado , C. , Angew. Chem. Int. Ed. , 59 , 17881 ( 2020 ). 10.1002/anie.202005731 CASPubMedWeb of Science®Google Scholar Beaumier , E. P. , Ott , A. A. , Wen , X. L. , Davis-Gilbert , Z. W. , Wheeler , T. A. , Topczewski , J. J. , Goodpaster , J. D. , and Tonks , I. A. , Chem. Sci. , 11 , 7204 ( 2020 ). 10.1039/D0SC01998D CASPubMedWeb of Science®Google Scholar Rodriguez , J. , Adet , N. , Saffon-Merceron , N. , and Bourissou , D. , Chem. Commun. (Cambridge, U. K.) , 56 , 94 ( 2020 ). 10.1039/C9CC07666B CASWeb of Science®Google Scholar Gao , M. , Gao , Q. Q. , Hao , X. B. , Wu , Y. , Zhang , Q. M. , Liu , G. H. , and Liu , R. , Org. Lett. , 22 , 1139 ( 2020 ). 10.1021/acs.orglett.9b04662 CASPubMedWeb of Science®Google Scholar Bu , Q. Q. , Kuniyil , R. , Shen , Z. G. , Gonka , E. , and Ackermann , L. , Chem. – Eur. J. , 26 , 16450 ( 2020 ). 10.1002/chem.202003062 CASPubMedWeb of Science®Google Scholar Korvorapun , K. , Moselage , M. , Struwe , J. , Rogge , T. , Messinis , A. M. , and Ackermann , L. , Angew. Chem. Int. Ed. , 59 , 18795 ( 2020 ). 10.1002/anie.202007144 CASPubMedWeb of Science®Google Scholar Gao , K. C. , Xu , M. , Cai , C. , Ding , Y. H. , Chen , J. H. , Liu , B. S. , and Xia , Y. Z. , Org. Lett. , 22 , 6055 ( 2020 ). 10.1021/acs.orglett.0c02117 CASPubMedWeb of Science®Google Scholar Storey , C. M. , Gyton , M. R. , Andrew , R. E. , and Chaplin , A. B. , Chem. – Eur. J. , 26 , 14715 ( 2020 ). 10.1002/chem.202002962 CASPubMedWeb of Science®Google Scholar Huang , W. Y. , Lu , C. H. , Ghorai , S. , Li , B. , and Li , C. K. , J. Am. Chem. Soc. , 142 , 15276 ( 2020 ). 10.1021/jacs.0c08283 CASPubMedWeb of Science®Google Scholar Harris , R. J. , Park , J. , Nelson , T. A. F. , Iqbal , N. , Salgueiro , D. C. , Bacsa , J. , MacBeth , C. E. , Baik , M. H. , and Blakey , S. B. , J. Am. Chem. Soc. , 142 , 5842 ( 2020 ). 10.1021/jacs.0c01069 CASPubMedWeb of Science®Google Scholar Kommagalla , Y. , Ando , S. , and Chatani , N. , Org. Lett. , 22 , 1375 ( 2020 ). 10.1021/acs.orglett.9b04664 CASPubMedWeb of Science®Google Scholar Dong , W. K. , Yang , H. X. , Yang , W. , and Zhao , W. X. , Org. Lett. , 22 , 1265 ( 2020 ). 10.1021/acs.orglett.9b04508 CASPubMedWeb of Science®Google Scholar Matt , C. , Kern , C. , and Streuff , J. , ACS Catal. , 10 , 6409 ( 2020 ). 10.1021/acscatal.0c01605 CASWeb of Science®Google Scholar Chen , L. P. , Gong , J. L. , Zhang , Y. T. , Shao , Y. L. , Chen , Z. Y. , Li , R. H. , and Chen , J. X. , Org. Lett. , 22 , 6943 ( 2020 ). 10.1021/acs.orglett.0c02478 PubMedWeb of Science®Google Scholar Navakouski , M. J. , Zhylitskaya , H. , Chmielewski , P. J. , Zyla-Karwowska , M. , and Stepien , M. , J. Org. Chem. , 85 , 187 ( 2020 ). 10.1021/acs.joc.9b02556 CASPubMedWeb of Science®Google Scholar Suzuki , H. , Shiomi , T. , Yoneoka , K. , and Matsuda , T. , Org. Biomol. Chem. , 18 , 7545 ( 2020 ). 10.1039/D0OB01815E CASPubMedWeb of Science®Google Scholar Organic Reaction Mechanisms 2020 ReferencesRelatedInformation

Top-100

Citing journals

2000
4000
6000
8000
10000
12000
Show all (70 more)
2000
4000
6000
8000
10000
12000

Citing publishers

5000
10000
15000
20000
25000
30000
35000
40000
Show all (70 more)
5000
10000
15000
20000
25000
30000
35000
40000

Publishing organizations

50
100
150
200
250
Show all (70 more)
50
100
150
200
250

Publishing organizations in 5 years

5
10
15
20
25
30
Show all (70 more)
5
10
15
20
25
30

Publishing countries

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
USA, 4896, 31.29%
Germany, 562, 3.59%
China, 536, 3.43%
Netherlands, 519, 3.32%
United Kingdom, 513, 3.28%
Canada, 439, 2.81%
Brazil, 434, 2.77%
France, 389, 2.49%
Italy, 381, 2.43%
Japan, 333, 2.13%
Spain, 330, 2.11%
Australia, 242, 1.55%
India, 214, 1.37%
Mexico, 172, 1.1%
Republic of Korea, 155, 0.99%
Israel, 101, 0.65%
Saudi Arabia, 100, 0.64%
Switzerland, 92, 0.59%
Sweden, 92, 0.59%
Poland, 81, 0.52%
Norway, 78, 0.5%
Iran, 73, 0.47%
Greece, 65, 0.42%
Denmark, 56, 0.36%
Finland, 48, 0.31%
Austria, 47, 0.3%
Hungary, 45, 0.29%
Belgium, 42, 0.27%
Russia, 40, 0.26%
Egypt, 40, 0.26%
Argentina, 39, 0.25%
Tunisia, 37, 0.24%
Czech Republic, 37, 0.24%
Venezuela, 34, 0.22%
Colombia, 34, 0.22%
Turkey, 34, 0.22%
Portugal, 30, 0.19%
South Africa, 30, 0.19%
Singapore, 25, 0.16%
Thailand, 24, 0.15%
Malaysia, 23, 0.15%
Ireland, 20, 0.13%
New Zealand, 20, 0.13%
Lebanon, 15, 0.1%
Bulgaria, 14, 0.09%
UAE, 13, 0.08%
Morocco, 12, 0.08%
Estonia, 11, 0.07%
Kuwait, 11, 0.07%
North Macedonia, 11, 0.07%
Iraq, 10, 0.06%
Romania, 10, 0.06%
Croatia, 10, 0.06%
Chile, 10, 0.06%
Vietnam, 9, 0.06%
Qatar, 9, 0.06%
Panama, 9, 0.06%
Costa Rica, 8, 0.05%
Cuba, 8, 0.05%
Pakistan, 8, 0.05%
Zimbabwe, 7, 0.04%
Indonesia, 7, 0.04%
Ghana, 6, 0.04%
Slovakia, 6, 0.04%
Slovenia, 6, 0.04%
Jordan, 5, 0.03%
Kenya, 5, 0.03%
Cyprus, 5, 0.03%
Nigeria, 5, 0.03%
Guatemala, 4, 0.03%
Zambia, 4, 0.03%
Papua New Guinea, 4, 0.03%
Philippines, 4, 0.03%
Ecuador, 4, 0.03%
Belarus, 3, 0.02%
Bangladesh, 3, 0.02%
Gambia, 3, 0.02%
Latvia, 3, 0.02%
Mali, 3, 0.02%
Oman, 3, 0.02%
Rwanda, 3, 0.02%
Serbia, 3, 0.02%
Tanzania, 3, 0.02%
Uganda, 3, 0.02%
Ethiopia, 3, 0.02%
Algeria, 2, 0.01%
Bolivia, 2, 0.01%
Burkina Faso, 2, 0.01%
Virgin Islands, British, 2, 0.01%
Guadeloupe, 2, 0.01%
Iceland, 2, 0.01%
Cameroon, 2, 0.01%
, 2, 0.01%
Mongolia, 2, 0.01%
Nicaragua, 2, 0.01%
Peru, 2, 0.01%
Puerto Rico, 2, 0.01%
Sudan, 2, 0.01%
Sri Lanka, 2, 0.01%
Kazakhstan, 1, 0.01%
Show all (70 more)
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

Publishing countries in 5 years

50
100
150
200
250
300
USA, 275, 27.12%
China, 63, 6.21%
Germany, 43, 4.24%
Iran, 36, 3.55%
Mexico, 34, 3.35%
Canada, 31, 3.06%
Brazil, 26, 2.56%
Spain, 24, 2.37%
United Kingdom, 22, 2.17%
India, 22, 2.17%
Australia, 18, 1.78%
Italy, 16, 1.58%
Netherlands, 14, 1.38%
France, 10, 0.99%
Japan, 10, 0.99%
Malaysia, 8, 0.79%
Poland, 8, 0.79%
Republic of Korea, 8, 0.79%
Sweden, 8, 0.79%
Egypt, 7, 0.69%
Iraq, 6, 0.59%
Portugal, 5, 0.49%
Saudi Arabia, 5, 0.49%
Russia, 4, 0.39%
Denmark, 4, 0.39%
Thailand, 4, 0.39%
Switzerland, 4, 0.39%
South Africa, 4, 0.39%
Argentina, 3, 0.3%
Israel, 3, 0.3%
Norway, 3, 0.3%
Tunisia, 3, 0.3%
Finland, 3, 0.3%
Belarus, 2, 0.2%
Bulgaria, 2, 0.2%
Venezuela, 2, 0.2%
Vietnam, 2, 0.2%
Guatemala, 2, 0.2%
Greece, 2, 0.2%
Indonesia, 2, 0.2%
Colombia, 2, 0.2%
Morocco, 2, 0.2%
UAE, 2, 0.2%
Pakistan, 2, 0.2%
Turkey, 2, 0.2%
Philippines, 2, 0.2%
Chile, 2, 0.2%
Ecuador, 2, 0.2%
Hungary, 1, 0.1%
Haiti, 1, 0.1%
Gambia, 1, 0.1%
Ghana, 1, 0.1%
Jordan, 1, 0.1%
Ireland, 1, 0.1%
Iceland, 1, 0.1%
Cameroon, 1, 0.1%
Qatar, 1, 0.1%
Luxembourg, 1, 0.1%
Malta, 1, 0.1%
Panama, 1, 0.1%
Peru, 1, 0.1%
Romania, 1, 0.1%
Singapore, 1, 0.1%
Tanzania, 1, 0.1%
Czech Republic, 1, 0.1%
Show all (35 more)
50
100
150
200
250
300