17 May 2023, 23:00

Новый класс препаратов позволит подавлять ВИЧ в нейронах

В поисках новых лекарств от ВИЧ сотрудники лаборатории биомедицинской химии ФИЦ Биотехнологии РАН вместе с американскими и итальянскими коллегами создали прототип лекарственного средства, направленный на полное элиминирование вируса из организма, а не перевод болезни в хроническую форму, как это происходит с существующими сейчас на рынке лекарствами. 

Новый класс препаратов позволит подавлять ВИЧ в нейронах
Source: National Cancer Institute / Unsplash

По данным Роспотребнадзора, в России ВИЧ выявлен у 1% населения. Вылечить заболевание пока практически невозможно, однако постоянный прием антиретровирусных препаратов позволяет подавить вирус, и пациент может жить нормальной жизнью. Вместе с тем, есть риски побочных эффектов и развития невосприимчивости патогена, а у некоторых пациентов могут развиться тяжелые сопутствующие заболевания, в том числе неврологические. Это происходит из-за того, что лекарства не могут пройти гематоэнцефалический барьер и попасть к мозгу, а потому нейроны становятся своего рода ВИЧ-брандерами.

Химики из ФИЦ Биотехнологии РАН (Москва) вместе с коллегами из Университета Северной Каролины в Чапел-Хилле и итальянского Университета Кальяри создали новый класс соединений для борьбы с ВИЧ — N-фенил-1-(фенилсульфонил)-1H-1,2,4-триазол-3-амины, которые подавляют работу обратной транскриптазы вируса.

«Обратная транскриптаза — это фермент, который позволяет вирусам создавать собственные копии внутри клетки. С его помощью такие вирусы, как ВИЧ или вирус гепатита B, у которых наследственная информация содержится в виде РНК, переводят ее в ДНК, чтобы превратить зараженную клетку в фабрику по производству новых вирусов. Ингибиторы обратной транскриптазы подавляют синтез новых вирусных частиц. Поэтому такие разработки занимают важнейшее место в антиретровирусной терапии», — комментирует со-ведущий автор работы Вадим Макаров, доктор фармацевтических наук, заведующий лабораторией биомедицинской химии ФИЦ Биотехнологии РАН.

Пока существует два типа ингибиторов обратной транскриптазы, которые применяются в терапии. Нуклеозидные построены как нуклеотиды («буквы» в ДНК и РНК, которые помогают записать наследственную информацию), но без остатка фосфорной кислоты. Они встраиваются в цепочку ДНК при копировании наследственной информации от вируса и останавливают ее рост и удлинение. На роль ненуклеозидных ингибиторов могут подойти разные органические соединения. Они связываются с аллостерическим центром обратной транскриптазы, который позволяет ей менять свою конфигурацию, что резко снижает эффективность работы фермента.

Ученые пошли по пути создания нового класса ненуклеозидных ингибиторов при помощи классического подхода медицинской химии — исследований того, как структура молекул влияет на их биологическую активность. Мишенью для их препарата стала обратная транскриптаза дикого типа ВИЧ, A17 (K103N/Y181C), а также мутантные штаммы, которые чаще всего перестают реагировать на терапию.

«Мы создали и оптимизировали более 250 соединений-кандидатов. Все они оказались активны против клинически значимых штаммов вируса в очень низкой, пикомолярной концентрации. Это дает нам надежду на разработку препарата, который не будет настолько токсичным, как имеющиеся аналоги», — заключает Вадим Макаров.

Примечательно, что новые соединения проходят сквозь гематоэнцефалический барьер к мозгу и безопасны для самых нервных клеток. Значит, с их помощью удастся снизить риски и когнитивных нарушений у пациентов.

Ученые надеются, что новый препарат приблизит нас к полному избавлению от ВИЧ-инфекции с минимальными побочными эффектами. На данный момент уже проведен ряд доклинических исследований.

Source:  Пресс-служба ФИЦ Биотехнологии РАН

News article publications

Read also

Ферменты бактериофагов помогут победить внутрибольничные инфекции
Бактериальные вирусы узнают патогенную бактерию благодаря деполимеразе хвостового шипа. Последняя разрезает разветвленные молекулы полисахаридов во внешней оболочке бактерии и тем самым способствует ее гибели
Microbiology
Pharmacy
Virology
3 July 2023
Биотехнологи проверили новые противовирусные препараты на герпесвирусах
Эти вещества - производные диазадиспироалканов - подавляют механизм прикрепления патогена к клетке и тем самым предотвращают ее заражение. Препараты на их основе могут стать потенциально универсальными противовирусными лекарствами
Pharmacy
Virology
14 November 2022
Кислота из лишайников сможет бороться с тремя штаммами коронавируса
Ее производные, связываясь с белками на поверхности вируса и меняя их пространственную структуру, препятствуют проникновению возбудителя в человеческие клетки.
Organic Chemistry
Pharmacy
Virology
8 November 2022
Оболочка из мела поможет вирусам бороться с болезнетворными бактериями в кишечнике
Исследователи включили фаги - вирусы бактерий - в оболочку из карбоната кальция, что позволило сохранить их активность до момента их попадания на "рабочее место", то есть в тонкий кишечник
Medicine
Microbiology
Pharmacy
Virology
14 April 2022
Раскрыто, что некоторые белки помогают вирусам проникнуть в бактериальную клетку
Белки семейства ArdA помогают вирусам проникнуть в бактериальную клетку, приняв образ ее ДНК. Проведя фундаментальные исследования, ученые Центра исследований молекулярных механизмов старения и возрастных заболеваний МФТИ и НИЦ «Курчатовский институт» показали, что такие белки не только подавляют защиту клеток, но и регулируют целый ряд других клеточных процессов. Результаты исследования заложили основу для будущих прикладных работ в области генной терапии.
Bacteriology
Genetics
Virology
31 January 2024
Найдена «точка невозврата» при развитии хронических вирусных инфекций
Ученые определили, что форма протекания вирусной инфекции — острая или хроническая — зависит от того, сколько раз в организме вырабатывается белок интерферон. При острой инфекции возникает две волны его продукции, но, если вирусная нагрузка оказывается слишком высокой, макрофаги CD169+, отвечающие за вторую волну, преждевременно разрушаются. В результате остается только первая волна интерферона, и иммунная система не может эффективно «мобилизоваться» и уничтожить вирус, а потому инфекция надолго остается в организме и становится хронической.
Genetics
Infectious diseases
Virology
30 January 2024