27 ноября 2023, 12:00

Открыт новый магнитный материал для создания энергонезависимой памяти

Несмотря на активное использование твердотельных накопителей в качестве памяти для компьютеров, жесткие диски на основе магнитной памяти все еще остаются довольно распространенными благодаря своей дешевизне и надежности. В их основе лежит кодирование битов (нулей или единиц) с помощью правильного намагничивания доменов — небольших участков на рабочей поверхности жесткого диска.

Открыт новый магнитный материал для создания энергонезависимой памяти
Доменная структура материала при различных температурах и магнитном поле 0,5 тесла
Источник: Small Methods

Сама по себе намагниченность — это продукт ориентации огромного числа атомных спинов. Ноль и единица в домене достигаются тогда, когда все спины ориентированы либо вверх, либо вниз. Вместе с тем допустимы и промежуточные варианты, когда в нужном направлении «смотрит» лишь часть спинов. Такой подход позволил бы кодировать в одном домене более одного бита, что существенно повысило бы информационную емкость жестких дисков.

Чтобы реализовать эту идею на практике, требуются материалы, в которых промежуточные состояния намагниченности устойчивы, в противном случае память лишится надежности. Ученые из Центра перспективных методов мезофизики и нанотехнологий МФТИ и их коллеги из нескольких французских институтов в своих поисках обратили внимание на соединение BaFe2(PO4)2, которое они назвали просто BFPO. Этот материал демонстрирует удивительно сильную стабильность доменных стенок после заморозки ниже 15 кельвинов. При такой температуре происходит фазовый переход от мягкого магнита к супертвердому. В последнем случае домены стабилизируются настолько сильно, что для их перемагничивания требуется очень большое магнитное поле — более 14 тесла.

Так происходит из-за того, что BFPO — это квазидвумерный изинговый ферромагнетик. Говоря проще, материал можно представить в виде слоев, в пределах которых спины атомов демонстрируют коллективные упорядочивания. Такая структура дарит материалу сильную магнитную анизотропию, то есть различный отклик в зависимости от направления приложенного магнитного поля.

Отличительная особенность BFPO заключается в очень узких доменных стенках. Чтобы убедиться в этом, физики исследовали образцы с помощью магнито-силовой микроскопии при различных температурах и магнитных полях. Как и предсказывали расчеты, доменная структура при этом представляет собой совокупность полос, образующих причудливый лабиринт.

Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ: «Мы в нашем центре обладаем целым рядом уникальных методик, одна из которых — криогенная  магнитно-силовая микроскопия. Эта методика позволила однозначно охарактеризовать новый материал. Мы впервые продемонстрировали его доменную структуру и ее динамику при воздействии внешнего магнитного поля и температуры. Нужно отметить, что во Франции такого исследования провести не удалось. Но и нам пришлось серьезно потрудиться: исследованные кристаллы имеют микроскопические размеры, и для изучения приходилось их помещать на специально подготовленную подложку микроманипулятором. Также они являются изоляторами, что приводит к скоплению электрического заряда на их поверхности и дополнительному, для нас вредному,  взаимодействию с кантилевером. Очевидно, что материал богат различными физическими свойствами. Необходимо подумать о возможном применении в микроэлектронике».

 

Температура, при которой удалось добиться проявления интересных свойств материала, некомфортна для его широкого применения, но стоит отметить возможное использование его в сверхпроводящей цифровой и квантовой электронике, где стоит острая проблема криогенной энергонезависимый памяти.

Исследование опубликовано в журнале Small Methods.

Источник:  Пресс-служба МФТИ

Профили учёных из новости

Лаборатории из новости

Публикации из новости

Читайте также

Исследован переход между 3D-антиферромагнетизмом и 2D-ферромагнетизмом в GdSi2
Полученные результаты позволяют предположить, что магнитные производные 2D-ксенов являются перспективными материалами для ультракомпактной спинтроники.
Магнетизм
Магнетохимия
Материаловедение
25 октября 2022
Выращены микроалмазы с оловом для квантовых компьютеров
Ученые впервые в мире вырастили в микроволновой плазме алмазы с примесью олова размером в несколько микрометров. Такие кристаллы способны поглощать и переизлучать видимый свет, что потенциально можно использовать для передачи информации между элементами квантовых компьютеров.
Кристаллохимия
Микроскопия
Синтез
7 января 2024
Выбивая электроны, физики определили направление магнитных моментов лантаноидов
Подход будет полезен при разработке гетероструктур и слоистых нанообъектов, мономолекулярных магнитов, а также магнитно активных супрамолекулярных соединений, содержащих лантаноиды
Магнетизм
Материаловедение
26 июля 2023
Ученые связали 3D-структуру хромосом с плотностью распределения активных генов
Сравнив крупные районы хромосом в половых и соматических клетках курицы, авторы показали, что в обоих типах участки активного хроматина соответствуют сегментам из мелких «узелков» и длинных боковых петель
Геномика
Микроскопия
Эпигенетика
18 июля 2023
Магнитный наноскальпель сможет бороться с неизлечимыми жидкими опухолями
Система из нанодисков и ДНК-аптамеров избирательно разрушает раковые клетки в переменном магнитном поле. Подход поможет в разработке терапии против практически неизлечимого злокачественного асцита
Магнетизм
Наномедицина
Новые методики
Онкология
26 апреля 2023
Сверхтонкий магнит связал графен с кремниевой технологией
Новый материал представляет собой сэндвич из графена и субмонослойной магнитной пленки на кремнии. Такое «соседство» с европием привносит в графен новые свойства, связанные с магнетизмом
Магнетизм
Материаловедение
Новые методики
Спинтроника
19 апреля 2023