26 July 2023, 21:00

Выбивая электроны, физики определили направление магнитных моментов лантаноидов

Физики предложили метод, который позволит надежно контролировать направление магнитного момента в тонкопленочных монокристаллических соединениях лантаноидов в зависимости от температуры и структуры соединений. Предложенный подход будет полезен при разработке широко круга технологически значимых гетероструктур и слоистых нанообъектов, мономолекулярных магнитов, а также магнитно активных супрамолекулярных соединений, содержащих лантаноиды.

Лантаноиды — семейство редкоземельных металлов, обладающих большим магнитным моментом. Они находят широкое применение в производстве электроники, магнитов, лазеров, оптического волокна, металлургии, химической и ядерной промышленности и множестве других областей.

По химическим свойствам лантаноиды очень схожи между собой, что объясняется строением электронных оболочек их атомов. В соединениях они в большинстве случаев оказываются трехвалентными, то есть образуют три связи с другими атомами. По мере увеличения заряда ядра внешние 5d- и 6s-электронные оболочки остаются незаполненными, но происходит заполнение сильно локализованных 4f-электронных орбиталей. 

Электроны 4f-оболочки и определяют магнитные свойства лантаноидов: поскольку электроны частично заполняют 4f-оболочку, ее форма оказывается несимметричной и возникает магнитный момент. В соединениях на эту электронную оболочку действует электрическое поле самого кристалла, и при низкой температуре она поворачивается, чтобы минимизировать энергию; с ней поворачивается и магнитный момент. Когда температура растет, повышается вероятность перехода электронов на более высокие энергетические уровни — меняется форма оболочки, ее ориентация и среднее направление магнитного момента. Ученым важно знать зависимость направления от температуры и строения материалов, чтобы создавать наноструктуры из лантаноидов с заданными магнитными параметрами. Такие системы, например, применяются в спиновой электронике — когда сигнал переносит не электрический ток, а ток спинов. 

В предыдущей работе физики из Центра перспективных методов мезофизики и нанотехнологий МФТИ и СПбГУ показали, что наклон магнитных моментов сильно влияет на спектр фотоэмиссии 4f-электронов. Фотоэмиссия — физический метод исследования, основанный на выбивании светом электронов с поверхности материала. Эти электроны попадают в анализатор, который измеряет их энергию. Ученые предположили, что по фотоэмиссионным спектрам, снятым при разных температурах, можно определить наклон магнитных моментов и его температурную зависимость. 

Первый автор работы, ведущий научный сотрудник лаборатории фотоэлектронной спектроскопии квантовых функциональных материалов МФТИ Дмитрий Усачев рассказывает: «Фотоэмиссия хорошо подходит для изучения слоистых двумерных систем. Нашей задачей было разработать методологию, которая бы позволяла, анализируя данные фотоэмиссии, получить информацию о магнетизме, в частности о том, куда направлены магнитные моменты в приповерхностной области кристалла. В качестве модельной системы мы взяли два материала, у которых в объеме магнитные моменты могут поворачиваться с температурой: изменяем температуру — меняется направление магнитных моментов. Мы хотели проследить это изменение, анализируя 4f-электроны. И оказалось, что да, это возможно».

В новом исследовании физики измеряли фотоэмиссию систем гольмий-родий-кремний (HoRh2Si2) и диспрозий-родий-кремний (DyRh2Si2). Анализируя спектры, полученные при различных температурах, ученые смогли проследить изменение наклона магнитного момента в приповерхностных слоях кристаллов.

Сначала авторы исследовали магнитные свойства в объеме кристаллов, в частности, измеряли зависимость магнитной восприимчивости от температуры. Ниже 11,5 К в кристалле соединения гольмия возникала температурная зависимость наклона магнитного момента от оси кристалла. По экспериментальным данным ученые построили модель, описывающую электрическое поле кристалла и магнитные свойства материала. Затем параметры модели изменили для расчетов свойств на поверхности кристалла. Оказалось, что теоретически наклон магнитных моментов на поверхности может значительно отличаться от наклона в объеме.

Затем исследователи измерили фотоэмиссионные спектры кристаллов гольмия и диспрозия. Интенсивность спектра электронов некоторых энергетических уровней резко менялась при 11,5 кельвина — именно при этой температуре возникало изменение наклона в объеме кристалла. Чтобы выстроить полную связь между фотоэмиссией и наклоном магнитных моментов, физики рассмотрели две модели: в первой параметры кристаллического поля вблизи поверхности считались такими же, как в объеме, исследованном в первой части работы, а во второй использовались расчетные параметры для поверхности. Оказалось, что только во втором случае рассчитанные температурные зависимости спектров отлично совпадали с измеренными. Таким образом ученые показали, что, имея данные фотоэмиссии, можно рассчитать наклон магнитных моментов при заданной температуре.

Более того, отклонение моментов от нормали в верхних атомных слоях зависит от того, какими атомами образована поверхность. В случае, когда кристалл оканчивался слоем кремния, магнитные моменты в приповерхностном слое гольмия отклонялись меньше от нормали, чем в объеме кристалла, а когда на поверхности оказывался слой гольмия, спектры фотоэмиссии указывали на более сильное отклонение моментов. Такое поведение объясняется различным электрическим полем в объеме и на поверхности кристалла. Это знание может быть важным при изготовлении пленок и гетероструктур из подобных материалов.

Дмитрий Усачев добавляет: «Как правило, спектры 4f-мультиплетов в широком энергетическом диапазоне считаются хорошо изученными и поэтому мало привлекают внимание ученых к изучению их тонкой структуры. Наш посыл был показать необходимость детального анализа таких спектров, которые, очевидно, содержат полезную информацию о магнитных свойствах 4f-систем. В дальнейшем мы планируем повысить чувствительность метода, чтобы изучать материалы с малыми примесями лантаноидов. Также, если мы будем делать какой-то интерфейс, соединять разные материалы, то на интерфейсе направление момента тоже может отличаться от того, что в объеме, и, возможно, в некоторых применениях нужно будет учитывать этот факт».

«На данный момент мы готовим эксперименты по изучению магнитной системы данного материала при помощи спинчувствительной сканирующей туннельной спектроскопии, которая была недавно реализована в нашем центре», — рассказывает Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ.

Source:  Пресс-служба МФТИ

News article profiles

News article publications

Read also

Сверхтонкий магнит связал графен с кремниевой технологией
Новый материал представляет собой сэндвич из графена и субмонослойной магнитной пленки на кремнии. Такое «соседство» с европием привносит в графен новые свойства, связанные с магнетизмом
Magnetism
Materials Science
New techniques
Spintronics
19 April 2023
Физики описали механизм взаимодействия сверхпроводимости и магнетизма
Обычно эти два явления антагонистичны и ухудшают характеристики друг друга, однако авторы смогли наблюдать их взаимоусиление
Electronics
Magnetism
Materials Science
Superconductivity
17 April 2023
Создан новый чувствительный к температуре молекулярный магнит на основе кобальта
При определенной температуре органические цепочки комплекса металла изменяют свою структуру, что позволяет тонко настроить его магнитные свойства. Такое свойство полезно при создании новейших устройств хранения памяти
"Smart" materials
Magnetism
Materials Science
14 February 2023
Исследован переход между 3D-антиферромагнетизмом и 2D-ферромагнетизмом в GdSi2
Полученные результаты позволяют предположить, что магнитные производные 2D-ксенов являются перспективными материалами для ультракомпактной спинтроники.
Magnetism
Magnetochemistry
Materials Science
25 October 2022
Полосатые нанопроволочки станут основой устройств магнитной памяти
Ученые уже описали их магнитные взаимодействия в составе трехмерного массива
Magnetism
Materials Science
Nanoelectronics
Spintronics
24 October 2022
Замещение редкоземельных металлов на марганец помогло улучшить магнитострикционный материал для космоса и Севера
Теперь соединение на основе феррита тербия может изменять свою форму и размер во внешнем магнитном поле даже в марсианских температурных условиях, а также стало гораздо дешевле
Magnetism
Materials Science
23 August 2022