28 December 2023, 12:00

Получена молекулярная структура бактериофага DT57C, поражающего кишечную палочку

Бесконтрольное использование антибиотиков в медицине, животноводстве и сельском хозяйстве привело к тому, что все больше бактерий приобретает устойчивость к этим веществам. Поэтому ученые стремятся найти новые технологии для борьбы с бактериальными заболеваниями человека, животных и растений. Одно из перспективных решений — использование бактериофагов — вирусов, специфично поражающих определенные виды бактерий. Чтобы адаптировать фаговую терапию для борьбы с опасными патогенами, нужно в подробностях знать строение таких вирусов.

Получена молекулярная структура бактериофага DT57C, поражающего кишечную палочку

Ученые из России (ФИЦ Биотехнологии РАН, МГУ имени М.В. Ломоносова) с коллегами из Японии и Китая описали молекулярное строение бактериофага DT57C, поражающего кишечную палочку (Escherichia coli) — бактерию, которая может вызывать у человека крайне разнообразные патологии от кишечных заболеваний до урологических инфекций и пневмоний. В ходе исследования авторы использовали метод криоэлектронной микроскопии и молекулярное моделирование, позволяющие определить трехмерную структуру белков на уровне отдельных атомов.

Исследователи выяснили, что капсид бактериофага DT57C — белковая оболочка, в которую «упакована» генетическая информация, — имеет распространенную для других вирусов форму икосаэдра, или двадцатигранника. При этом в состав оболочки входит два белка — основной капсидный белок MCP и вспомогательный, так называемый «декоративный» белок DCP. Каждая грань оболочки c включает 6 гексамеров главного белка капсида, в центре каждого из которых располагается декорирующий белок.

Бактериофаги, помимо капсида, имеют хвостовой отросток или просто хвост — структуру, которая обеспечивает прикрепление к бактериальной клетке и «впрыскивание» в нее молекулы нуклеиновой кислоты (ДНК или РНК). У фага DT57C хвост представляет собой белковую трубку, на одном конце которой имеется переходный комплекс для соединения с капсидом, так называемая шейка фага, а на другом – базальная структура или tip-комплекс, отвечающий за распознавание поверхности клетки хозяина. Исследователям удалось частично визуализировать структуру белка TMP, расположенного внутри канала хвоста. Этот белок играет важную роль как при сборке хвоста в клетке бактерии, так и в процессе инфицирования новой клетки хозяина. В этой работе удалось показать, что и верхняя (со стороны головки) и нижняя часть тяжа TMP представленна трехтяжевой косичкой из альфа-спиралей (трехтяжевой coiled coil структурой). Очень необычным по сравнению с другими фагами оказался и способ присоединения боковых фибрилл хвоста.

«Наши реконструкции позволили выявить нетипичный способ прикрепления боковых хвостовых нитей к хвостовому отростку. Оказалось, что этому способствует специальное кольцо из 12 субъединиц небольшого белка LtfC, в который под углом в 120 градусов заходят своими N-концевыми фрагментами тримеры белка LtfA, формирующего собственно фибриллы. Второй белок фибрилл LtfB присоединяется уже к LtfA. При образовании структуры, закрепляющей LtfA на хвосте фага, белковые цепи LtfA и LtfC сложным образом переплетаются, образуя совместные бета-листки, так что все кольцо с тремы исходящими из него фибриллами представляет единое целое. Кроме этого, мы смогли проанализировать вирусные частицы, когда их капсиды содержали ДНК, и когда нуклеиновая кислота была уже "выброшена". Благодаря этому мы смогли построить атомные модели обоих состояний и понять конформационные изменения, приводящие к высвобождению ДНК», — рассказывает Андрей Летаров, доктор биологических наук, заведующий лабораторией вирусов микроорганизмов ФИЦ Биотехнологии РАН.

Результаты исследования опубликованы в журнале Nature Communications.

Source:  Пресс-служба ФИЦ Биотехнологии РАН

News article publications

Read also

Раскрыто, что некоторые белки помогают вирусам проникнуть в бактериальную клетку
Белки семейства ArdA помогают вирусам проникнуть в бактериальную клетку, приняв образ ее ДНК. Проведя фундаментальные исследования, ученые Центра исследований молекулярных механизмов старения и возрастных заболеваний МФТИ и НИЦ «Курчатовский институт» показали, что такие белки не только подавляют защиту клеток, но и регулируют целый ряд других клеточных процессов. Результаты исследования заложили основу для будущих прикладных работ в области генной терапии.
Bacteriology
Genetics
Virology
31 January 2024
Вирусы бактерий используют механическую силу, чтобы пробиться через О-антиген
О-антиген – это ключевой компонент, обеспечивающий взаимодействие между бактериями и иммунной системой организма или фагами. Как О-антиген защищает клетки от атаки вирусами бактерий? Каковы принципы работы «щита» бактерий в виде О-антигена? Как бактериофаги могут преодолевать барьер О-антигена? Ответы на эти и другие важные вопросы представлены в обзорной статье, подготовленной Андреем Летаровым, д.б.н., заведующим лабораторией вирусов микроорганизмов ФИЦ Биотехнологии РАН. Эта работа не только дает анализ современного состояния проблемы, но и подводит итог более, чем 15-летней работе лаборатории по данной тематике.
Bacteriology
Microbiology
Virology
19 January 2024
Синтез древовидных полимер поможет в создании антибиотиков нового поколения
Исследователи изобрели простой и экономичный метод синтеза, позволяющий получать новое эффективное антибактериальное соединение с разветвленной древовидной структурой. Чтобы усилить антибиотические свойства такого молекулярного «дерева», называемого дендримером, ученые добавили к нему фермент лизоцим, разрушающий клеточные стенки бактерий. Комплексное вещество в три раза эффективнее подавляло рост грамположительных и грамотрицательных бактерий, чем лизоцим и дендримеры по отдельности.
Bacteriology
Molecular Biology
Synthesis
16 October 2023
Циклические липопептиды не дали коронавирусу заразить клетки
Эти соединения используются как противогрибковые и антибактериальные лекарства. Теперь же ученые показали, что они мешают липидной оболочке вируса слиться с мембраной клетки, а значит, и проникнуть в нее
Molecular Biology
Pharmacology
Virology
3 April 2023
Белок-регулятор избирательно связывает «горячую точку» N-протеина SARS-CoV-2
Предположительно, в результате такого взаимодействия меняется как жизненный цикл самого вируса, так и важнейшие функции клетки. При этом белок-регулятор оказывается одним из главных помощников патогена
Molecular Biology
Virology
28 March 2023
Ученые выяснили, как ВИЧ может способствовать развитию лимфом
Один белок вируса влияет на сотни генов и таким образом вызывает злокачественное перерождение
Genetics
Molecular Biology
Virology
18 October 2022