Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods
Lihui Ren
1, 2
,
Ye Tian
1
,
Xiaoying Yang
1
,
Qi Wang
1, 2
,
Leshan Wang
1
,
Xin Geng
1
,
Kaiqiang Wang
3
,
Zengfeng Du
4
,
Ying Li
1
,
Hong Lin
3
1
4
Key Laboratory of Marine Geology and Environment, Chinese Academy of Sciences, Qingdao 266071, China
|
Тип публикации: Journal Article
Дата публикации: 2023-01-01
scimago Q1
wos Q1
БС1
SJR: 1.952
CiteScore: 18.3
Impact factor: 9.8
ISSN: 03088146, 18737072
PubMed ID:
36058043
General Medicine
Analytical Chemistry
Food Science
Краткое описание
There has been an increasing demand for the rapid verification of fish authenticity and the detection of adulteration. In this work, we combined LIBS and Raman spectroscopy for the fish species identification for the first time. Two machine learning methods of SVM and CNN are used to establish the classification models based on the LIBS and Raman data obtained from 13 types of fish species. Data fusion strategies including low-level, mid-level and high-level fusions are used for the combination of LIBS and Raman data. It shows that all these data fusion strategies offer a significant improvement in fish classification compared with the individual LIBS or Raman data, and the CNN model works more powerfully than the SVM model. The low-level fusion CNN model provides a best classification accuracy of 98.2%, while the mid-level fusion involved with feature selection improves the computing efficiency and gains the interpretability of CNN.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
|
|
|
Microchemical Journal
5 публикаций, 6.58%
|
|
|
Food Control
4 публикации, 5.26%
|
|
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
4 публикации, 5.26%
|
|
|
Food Chemistry
4 публикации, 5.26%
|
|
|
Journal of Food Composition and Analysis
3 публикации, 3.95%
|
|
|
Trends in Food Science and Technology
3 публикации, 3.95%
|
|
|
Analytica Chimica Acta
3 публикации, 3.95%
|
|
|
Foods
2 публикации, 2.63%
|
|
|
Current Research in Food Science
2 публикации, 2.63%
|
|
|
Journal of Analytical Atomic Spectrometry
2 публикации, 2.63%
|
|
|
Journal of Environmental Chemical Engineering
2 публикации, 2.63%
|
|
|
Spectrochimica Acta, Part B: Atomic Spectroscopy
2 публикации, 2.63%
|
|
|
Applied Spectroscopy Reviews
2 публикации, 2.63%
|
|
|
Food Research International
2 публикации, 2.63%
|
|
|
Talanta
2 публикации, 2.63%
|
|
|
Fishes
1 публикация, 1.32%
|
|
|
Plasma Science and Technology
1 публикация, 1.32%
|
|
|
Remote Sensing
1 публикация, 1.32%
|
|
|
Artificial Intelligence Review
1 публикация, 1.32%
|
|
|
Sensors
1 публикация, 1.32%
|
|
|
Knowledge and Information Systems
1 публикация, 1.32%
|
|
|
Comprehensive Reviews in Food Science and Food Safety
1 публикация, 1.32%
|
|
|
Polymer Testing
1 публикация, 1.32%
|
|
|
Frontiers in Marine Science
1 публикация, 1.32%
|
|
|
Scientific Reports
1 публикация, 1.32%
|
|
|
Agriculture (Switzerland)
1 публикация, 1.32%
|
|
|
Infrared Physics and Technology
1 публикация, 1.32%
|
|
|
Food and Humanity
1 публикация, 1.32%
|
|
|
Analytical Methods
1 публикация, 1.32%
|
|
|
1
2
3
4
5
|
Издатели
|
5
10
15
20
25
30
35
40
45
50
|
|
|
Elsevier
48 публикаций, 63.16%
|
|
|
Springer Nature
7 публикаций, 9.21%
|
|
|
MDPI
6 публикаций, 7.89%
|
|
|
Wiley
3 публикации, 3.95%
|
|
|
Royal Society of Chemistry (RSC)
3 публикации, 3.95%
|
|
|
Taylor & Francis
3 публикации, 3.95%
|
|
|
Research Square Platform LLC
2 публикации, 2.63%
|
|
|
IOP Publishing
1 публикация, 1.32%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 1.32%
|
|
|
Frontiers Media S.A.
1 публикация, 1.32%
|
|
|
Oxford University Press
1 публикация, 1.32%
|
|
|
5
10
15
20
25
30
35
40
45
50
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
76
Всего цитирований:
76
Цитирований c 2024:
58
(76.32%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Ren L. et al. Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods // Food Chemistry. 2023. Vol. 400. p. 134043.
ГОСТ со всеми авторами (до 50)
Скопировать
Ren L., Tian Y., Yang X., Wang Q., Wang L., Geng X., Wang K., Du Z., Li Y., Lin H. Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods // Food Chemistry. 2023. Vol. 400. p. 134043.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.foodchem.2022.134043
UR - https://doi.org/10.1016/j.foodchem.2022.134043
TI - Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods
T2 - Food Chemistry
AU - Ren, Lihui
AU - Tian, Ye
AU - Yang, Xiaoying
AU - Wang, Qi
AU - Wang, Leshan
AU - Geng, Xin
AU - Wang, Kaiqiang
AU - Du, Zengfeng
AU - Li, Ying
AU - Lin, Hong
PY - 2023
DA - 2023/01/01
PB - Elsevier
SP - 134043
VL - 400
PMID - 36058043
SN - 0308-8146
SN - 1873-7072
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Ren,
author = {Lihui Ren and Ye Tian and Xiaoying Yang and Qi Wang and Leshan Wang and Xin Geng and Kaiqiang Wang and Zengfeng Du and Ying Li and Hong Lin},
title = {Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods},
journal = {Food Chemistry},
year = {2023},
volume = {400},
publisher = {Elsevier},
month = {jan},
url = {https://doi.org/10.1016/j.foodchem.2022.134043},
pages = {134043},
doi = {10.1016/j.foodchem.2022.134043}
}
Профили