Создан новый чувствительный к температуре молекулярный магнит на основе кобальта
Российские химики синтезировали соединение, на основе которого в будущем могут создаваться молекулярные сенсоры для квантовых компьютеров, датчиков и систем сверхплотного хранения информации. Новое устойчивое на воздухе соединение кобальта, которое способно обратимо изменять свои магнитные свойства и кристаллическую структуру под действием температуры, создали ученые из Института общей и неорганической химии имени Н. С. Курнакова РАН вместе с коллегами из Института элементоорганических соединений имени А. Н. Несмеянова РАН, Курчатовского института и Международного томографического центра.
Разработка молекулярных материалов, физические свойства которых можно контролировать с помощью внешних воздействий — света, электрического поля, температуры и давления, — в последнее время все чаще привлекает внимание исследователей. Основой таких высокотехнологичных веществ служат координационные или металлоорганические соединения. Те из них, в которых реализуются магнитные эффекты, связанные с изменением спинового состояния, очень перспективны при разработке систем хранения, обработки и передачи данных, а также в датчиках и электронных компонентах. Актуальность объясняется тем, что современные магнитные устройства памяти компьютеров близки к своему пределу. Так, плотность записи на них ограничена размером ансамбля — группы из миллионов атомов, которые хранят лишь один бит информации. В молекулярных магнитах потенциальным битом информации может быть одна молекула (ион металла в окружении органических соединений), что теоретически повысит плотность записи информации в тысячи и миллионы раз.
Ученые из ИОНХ РАН предложили поместить в окружение кобальта молекулу с длинным углеродным каркасом, подвижность которого способна привести к изменению структуры всей молекулы и ее магнитных свойств.
«Мы решили задачу синтеза и выделения монокристаллов нового вещества. Определяя его строение, мы обнаружили, что под действием температуры молекулярная структура соединения меняется, а кристалличность при этом сохраняется. Изменяя окружение иона кобальта, мы получили эффективный инструмент для контроля физических свойств материала», — пояснил Дмитрий Ямбулатов, старший научный сотрудник лаборатории химии координационных полиядерных соединений ИОНХ РАН.
Авторы исследования считают, что использование нежестких органических молекул при создании «переключаемых» материалов поможет в тонкой настройке их физических свойств.
«В будущем мы хотим расширить набор органических соединений и синтезировать комплексы кобальта с более длинными молекулами, а также подобрать такие заместители, которые бы привели к получению трехмерных координационных полимеров — это должно привести к большему количеству переключаемых физических эффектов. Сейчас наш полимер — это цепочки, состоящие из «хвоста» иона кобальта, которые сжимаются/разжимаются в одной оси. Если мы сможем сжимать/разжимать в дополнительных осях, то эффективность контроля увеличится», — поделился планами научного коллектива Дмитрий Ямбулатов.