том 198 страницы 560-572

Data fusion approaches in spectroscopic characterization and classification of PDO wine vinegars

Rocío Ríos Reina 1
Raquel M. Callejón 1
Francesco Savorani 2
José M. Amigó 3
Marina Cocchi 4
Тип публикацииJournal Article
Дата публикации2019-06-01
scimago Q1
wos Q1
БС1
SJR0.976
CiteScore11.0
Impact factor6.1
ISSN00399140, 18733573
Analytical Chemistry
Краткое описание
Spain is one of the major producers of high-quality wine vinegars having three protected designations of origin (a.k.a. PDOs): "Vinagre de Jerez", "Vinagre de Condado de Huelva" and "Vinagre de Montilla-Moriles". Their high prices due to their high quality and their high production costs explain the need for developing an adequate quality control technique and the interest in extensive characterization in order to capture the identity of each denomination. In this framework, methodologies based on non-targeted techniques, such as spectroscopies, are becoming popular in food authentication. Thus, for improving vinegar quality assessment, fusion of data blocks obtained from the same samples but different analytical techniques could be a good strategy, since the quantity and quality of sample knowledge could be enhanced providing new insights into the differentiation of vinegars. Therefore, the aim of this manuscript is the development of a multi-platform methodology and a model able to classify the Spanish wine vinegar PDOs. Sixty-five PDO wine vinegars were analyzed by four spectroscopic techniques: Fourier-transform mid-infrared spectroscopy (MIR), near infrared spectroscopy (NIR), multidimensional fluorescence spectroscopy (EEM) and proton nuclear magnetic resonance (1H-NMR). Two different data fusion strategies were evaluated: Mid-level data fusion with different preprocessing, and Common Component and Specific Weights analysis multiblock method. Exploratory and classification analysis on the data from individual techniques were also performed and compared with data fusion models. The data fusion models improved the classification, providing a more efficient differentiation, than the models based on single methods, and supporting the approach to combine these methods to achieve synergies for an optimized PDO differentiation.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
8
9
Food Chemistry
9 публикаций, 11.54%
Foods
4 публикации, 5.13%
TrAC - Trends in Analytical Chemistry
4 публикации, 5.13%
Molecules
3 публикации, 3.85%
Sensors
3 публикации, 3.85%
Food Control
3 публикации, 3.85%
Analytica Chimica Acta
3 публикации, 3.85%
Applied Sciences (Switzerland)
2 публикации, 2.56%
Chemosensors
2 публикации, 2.56%
Chemometrics and Intelligent Laboratory Systems
2 публикации, 2.56%
LWT - Food Science and Technology
2 публикации, 2.56%
Talanta
2 публикации, 2.56%
Critical Reviews in Food Science and Nutrition
2 публикации, 2.56%
Data Handling in Science and Technology
2 публикации, 2.56%
Materials Express
1 публикация, 1.28%
Processes
1 публикация, 1.28%
Beverages
1 публикация, 1.28%
European Food Research and Technology
1 публикация, 1.28%
Food Analytical Methods
1 публикация, 1.28%
Journal of Hazardous Materials
1 публикация, 1.28%
Microchemical Journal
1 публикация, 1.28%
Journal of Food Composition and Analysis
1 публикация, 1.28%
Current Opinion in Food Science
1 публикация, 1.28%
Comprehensive Reviews in Food Science and Food Safety
1 публикация, 1.28%
Journal of Chemometrics
1 публикация, 1.28%
Journal of Agricultural and Food Chemistry
1 публикация, 1.28%
RSC Advances
1 публикация, 1.28%
Food Reviews International
1 публикация, 1.28%
Critical Reviews in Analytical Chemistry
1 публикация, 1.28%
1
2
3
4
5
6
7
8
9

Издатели

5
10
15
20
25
30
35
40
45
Elsevier
43 публикации, 55.13%
MDPI
17 публикаций, 21.79%
Taylor & Francis
5 публикаций, 6.41%
Wiley
4 публикации, 5.13%
Springer Nature
2 публикации, 2.56%
American Chemical Society (ACS)
2 публикации, 2.56%
American Scientific Publishers
1 публикация, 1.28%
Royal Society of Chemistry (RSC)
1 публикация, 1.28%
Hindawi Limited
1 публикация, 1.28%
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 1.28%
5
10
15
20
25
30
35
40
45
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
78
Поделиться
Цитировать
ГОСТ |
Цитировать
Ríos Reina R. et al. Data fusion approaches in spectroscopic characterization and classification of PDO wine vinegars // Talanta. 2019. Vol. 198. pp. 560-572.
ГОСТ со всеми авторами (до 50) Скопировать
Ríos Reina R., Callejón R. M., Savorani F., Amigó J. M., Cocchi M. Data fusion approaches in spectroscopic characterization and classification of PDO wine vinegars // Talanta. 2019. Vol. 198. pp. 560-572.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.talanta.2019.01.100
UR - https://doi.org/10.1016/j.talanta.2019.01.100
TI - Data fusion approaches in spectroscopic characterization and classification of PDO wine vinegars
T2 - Talanta
AU - Ríos Reina, Rocío
AU - Callejón, Raquel M.
AU - Savorani, Francesco
AU - Amigó, José M.
AU - Cocchi, Marina
PY - 2019
DA - 2019/06/01
PB - Elsevier
SP - 560-572
VL - 198
PMID - 30876600
SN - 0039-9140
SN - 1873-3573
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Ríos Reina,
author = {Rocío Ríos Reina and Raquel M. Callejón and Francesco Savorani and José M. Amigó and Marina Cocchi},
title = {Data fusion approaches in spectroscopic characterization and classification of PDO wine vinegars},
journal = {Talanta},
year = {2019},
volume = {198},
publisher = {Elsevier},
month = {jun},
url = {https://doi.org/10.1016/j.talanta.2019.01.100},
pages = {560--572},
doi = {10.1016/j.talanta.2019.01.100}
}