Differential scanning calorimetry coupled with machine learning technique: An effective approach to determine the milk authenticity
Juliana S Farah
1
,
Rodrigo B. Cavalcanti
2
,
Jonas T. Guimarães
3
,
Celso F. Balthazar
3
,
Pablo T Coimbra
1
,
Tatiana Colombo Pimentel
4
,
Erick A. Esmerino
3
,
Frank U. Renner
3
,
Mõnica Q Freitas
3
,
Anderson S. Sant'Ana
5
,
Roberto P. C. Neto
6
,
Maria Helena Tavares
6
,
N. Pereira
7
,
Marcia C. Silva
1
,
A. P. M. Cruz
1
1
Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-02, Rio de Janeiro, Brazil
|
Тип публикации: Journal Article
Дата публикации: 2021-03-01
scimago Q1
wos Q1
БС1
SJR: 1.265
CiteScore: 14.1
Impact factor: 6.3
ISSN: 09567135, 18737129
Biotechnology
Food Science
Краткое описание
Differential scanning calorimetry (DSC) coupled with machine-learning tools (random forest, gradient boosting machine, and multilayer perceptron, RF, GBM, MLP) were used to detect adulteration of raw bovine milk (formaldehyde, whey, urea, and starch). Adulterated samples presented a different DSC profile from raw milk. GBM and MLP were able to classify 100% of adulterated samples, whereas RF showed optimal performance with recognition and prediction capability of 100% and 88.5%, respectively. Overall, peak temperature of crystallization was the most important discriminating predictor for GBM and RF models, whereas peak temperature of boiling followed by onset temperature of crystallization and onset temperature of boiling were the most important predictors for MLP model. The detection of adulteration in milk has a multidimensional approach and DSC associated with machine-learning methods present an interesting perspective with practical potential to be adopted by the dairy industry.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
|
|
|
Journal of Food Composition and Analysis
5 публикаций, 7.46%
|
|
|
Food Science and Technology
4 публикации, 5.97%
|
|
|
Journal of Food Measurement and Characterization
3 публикации, 4.48%
|
|
|
International Journal of Dairy Technology
3 публикации, 4.48%
|
|
|
Journal of Dairy Science
3 публикации, 4.48%
|
|
|
Foods
3 публикации, 4.48%
|
|
|
Molecules
2 публикации, 2.99%
|
|
|
Scientific Reports
2 публикации, 2.99%
|
|
|
Meat Science
2 публикации, 2.99%
|
|
|
Trends in Food Science and Technology
2 публикации, 2.99%
|
|
|
Food Chemistry
2 публикации, 2.99%
|
|
|
Food Control
2 публикации, 2.99%
|
|
|
Comprehensive Reviews in Food Science and Food Safety
2 публикации, 2.99%
|
|
|
Applied Sciences (Switzerland)
2 публикации, 2.99%
|
|
|
Sensors
1 публикация, 1.49%
|
|
|
Insects
1 публикация, 1.49%
|
|
|
Toxicology Reports
1 публикация, 1.49%
|
|
|
Food Chemistry: X
1 публикация, 1.49%
|
|
|
LWT - Food Science and Technology
1 публикация, 1.49%
|
|
|
Journal of Food Process Engineering
1 публикация, 1.49%
|
|
|
Agribusiness
1 публикация, 1.49%
|
|
|
Journal of Dispersion Science and Technology
1 публикация, 1.49%
|
|
|
International Journal of Food Science
1 публикация, 1.49%
|
|
|
Journal of Food Quality
1 публикация, 1.49%
|
|
|
Arquivo Brasileiro de Medicina Veterinaria e Zootecnia
1 публикация, 1.49%
|
|
|
Journal of Food Science
1 публикация, 1.49%
|
|
|
Food and Bioproducts Processing
1 публикация, 1.49%
|
|
|
Polymer Testing
1 публикация, 1.49%
|
|
|
Critical Reviews in Food Science and Nutrition
1 публикация, 1.49%
|
|
|
1
2
3
4
5
|
Издатели
|
5
10
15
20
25
|
|
|
Elsevier
25 публикаций, 37.31%
|
|
|
MDPI
10 публикаций, 14.93%
|
|
|
Springer Nature
9 публикаций, 13.43%
|
|
|
Wiley
9 публикаций, 13.43%
|
|
|
SciELO
5 публикаций, 7.46%
|
|
|
Taylor & Francis
3 публикации, 4.48%
|
|
|
Hindawi Limited
2 публикации, 2.99%
|
|
|
American Dairy Science Association
2 публикации, 2.99%
|
|
|
American Chemical Society (ACS)
1 публикация, 1.49%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 1.49%
|
|
|
5
10
15
20
25
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
67
Всего цитирований:
67
Цитирований c 2024:
37
(55.22%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Farah J. S. et al. Differential scanning calorimetry coupled with machine learning technique: An effective approach to determine the milk authenticity // Food Control. 2021. Vol. 121. p. 107585.
ГОСТ со всеми авторами (до 50)
Скопировать
Farah J. S., Cavalcanti R. B., Guimarães J. T., Balthazar C. F., Coimbra P. T., Pimentel T. C., Esmerino E. A., Renner F. U., Freitas M. Q., Sant'Ana A. S., Neto R. P. C., Tavares M. H., Pereira N., Silva M. C., Cruz A. P. M. Differential scanning calorimetry coupled with machine learning technique: An effective approach to determine the milk authenticity // Food Control. 2021. Vol. 121. p. 107585.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.foodcont.2020.107585
UR - https://doi.org/10.1016/j.foodcont.2020.107585
TI - Differential scanning calorimetry coupled with machine learning technique: An effective approach to determine the milk authenticity
T2 - Food Control
AU - Farah, Juliana S
AU - Cavalcanti, Rodrigo B.
AU - Guimarães, Jonas T.
AU - Balthazar, Celso F.
AU - Coimbra, Pablo T
AU - Pimentel, Tatiana Colombo
AU - Esmerino, Erick A.
AU - Renner, Frank U.
AU - Freitas, Mõnica Q
AU - Sant'Ana, Anderson S.
AU - Neto, Roberto P. C.
AU - Tavares, Maria Helena
AU - Pereira, N.
AU - Silva, Marcia C.
AU - Cruz, A. P. M.
PY - 2021
DA - 2021/03/01
PB - Elsevier
SP - 107585
VL - 121
SN - 0956-7135
SN - 1873-7129
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2021_Farah,
author = {Juliana S Farah and Rodrigo B. Cavalcanti and Jonas T. Guimarães and Celso F. Balthazar and Pablo T Coimbra and Tatiana Colombo Pimentel and Erick A. Esmerino and Frank U. Renner and Mõnica Q Freitas and Anderson S. Sant'Ana and Roberto P. C. Neto and Maria Helena Tavares and N. Pereira and Marcia C. Silva and A. P. M. Cruz},
title = {Differential scanning calorimetry coupled with machine learning technique: An effective approach to determine the milk authenticity},
journal = {Food Control},
year = {2021},
volume = {121},
publisher = {Elsevier},
month = {mar},
url = {https://doi.org/10.1016/j.foodcont.2020.107585},
pages = {107585},
doi = {10.1016/j.foodcont.2020.107585}
}